如圖,平面四邊形
的4個(gè)頂點(diǎn)都在球
的表面上,
為球
的直徑,
為球面上一點(diǎn),且
平面
,
,點(diǎn)
為
的中點(diǎn).
(1) 證明:平面
平面
;
(2) 求平面
與平面
所成銳二面角的余弦值.![]()
(1)詳見解析;(2)![]()
解析試題分析:本小題通過立體幾何的相關(guān)知識,具體涉及到直線與直線垂直的判斷、線面的平行關(guān)系的判斷以及二面角的求法等有關(guān)知識,考查考生的空間想象能力、推理論證能力,對學(xué)生的數(shù)形結(jié)合思想的考查也有涉及,本題是一道立體幾何部分的綜合題,屬于中檔難度試題. (1)借助幾何體的性質(zhì),得到
,借助線面平行的判定定理得到線面平行,進(jìn)而利用面面平行的判定定理證明平面
平面
;(2)利用空間向量的思路,建立坐標(biāo)系,明確各點(diǎn)坐標(biāo),求解兩個(gè)半平面的法向量,進(jìn)而利用向量的夾角公式求解二面角的平面角.
試題解析:(1) 證明:
且
,
則
平行且等于
,即四邊形
為平行四邊形,所以
.
(6分)
(2) 以
為原點(diǎn),
方向?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4d/f/kalf5.png" style="vertical-align:middle;" />軸,以平面
內(nèi)過
點(diǎn)且垂直于
方向?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/cb/6/1xd4k.png" style="vertical-align:middle;" />軸以
方向?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/05/a/onlps.png" style="vertical-align:middle;" />軸,建立如圖所示坐標(biāo)系.![]()
則
,
,
,
,
,
由
,
,
可知![]()
由
,
,
可知![]()
則
,
因此平面
與平面
所成銳二面角的余弦值為
. (12分)
考點(diǎn):(1)直線與直線垂直的判斷、線面的平行關(guān)系的判斷;(2)二面角的求法.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱
中,
,
,異面直線
與
所成
的角為
.![]()
(Ⅰ)求證:
;
(Ⅱ)設(shè)
是
的中點(diǎn),求
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在幾何體
中,
平面
,
,
是等腰直角三角形,
,且
,點(diǎn)
是
的中點(diǎn).![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,四棱錐
中,
底面
,面
是直角梯形,
為側(cè)棱
上一點(diǎn).該四棱錐的俯視圖和側(cè)(左)視圖如圖2所示.
(Ⅰ)證明:
平面
;
(Ⅱ)證明:
∥平面
;
(Ⅲ)線段
上是否存在點(diǎn)
,使
與
所成角的余弦值為
?若存在,找到所有符合要求的點(diǎn)
,并求
的長;若不存在,說明理由.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直三棱柱
的側(cè)棱長為3,
,且
,
、
分別是棱
、
上的動點(diǎn),且![]()
(1)證明:無論
在何處,總有
;
(2)當(dāng)三棱柱
.的體積取得最大值時(shí),求異面直線
與
所成角的余弦值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,三棱柱A1B1C1—ABC的三視圖中,正(主)視圖和側(cè)(左)視圖是全等的矩形,俯視圖是等腰直角三角形,點(diǎn)M是A1B1的中點(diǎn).![]()
(1)求證:B1C∥平面AC1M;
(2)求證:平面AC1M⊥平面AA1B1B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐F-ABCD的底面ABCD是菱形,其對角線AC=2,BD=
,AE、CF都與平面ABCD垂直,AE=1,CF=2.![]()
(I)求二面角B-AF-D的大小;
(II)求四棱錐E-ABCD與四棱錐F-ABCD公共部分的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成30o的二面角
,如圖二,在二面角
中.![]()
(1) 求CD與面ABC所成的角正弦值的大小;
(2) 對于AD上任意點(diǎn)H,CH是否與面ABD垂直。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角梯形ABCD中,AD//BC,
,
,如圖(1).把
沿
翻折,使得平面
,如圖(2).![]()
(Ⅰ)求證:
;
(Ⅱ)求三棱錐
的體積;
(Ⅲ)在線段
上是否存在點(diǎn)N,使得![]()
?若存在,請求出
的值;若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com