【題目】在平面直角坐標系
,
.以坐標原點為極點,
軸正半軸為極軸建立極坐標系,已知曲線
的極坐標方程為
,點
為
上的動點,
為
的中點.
(1)請求出
點軌跡
的直角坐標方程;
(2)設點
的極坐標為
若直線
經過點
且與曲線
交于點
,弦
的中點為
,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】(題文)如圖,長方形材料
中,已知
,
.點
為材料
內部一點,
于
,
于
,且
,
. 現要在長方形材料
中裁剪出四邊形材料
,滿足
,點
、
分別在邊
,
上.
(1)設
,試將四邊形材料
的面積表示為
的函數,并指明
的取值范圍;
(2)試確定點
在
上的位置,使得四邊形材料
的面積
最小,并求出其最小值.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線
,直線
與拋物線
交于
為拋物線
上一點.
(1)若
,求![]()
(2)已知點
,過點
作直線
分別交曲線
于
,證明:在點
運動過程中,直線
始終過定點,并求出該定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】絕大部分人都有患呼吸系統疾病的經歷,現在我們調查患呼吸系統疾病是否和所處環境有關.一共調查了
人,患有呼吸系統疾病的
人,其中
人在室外工作,
人在室內工作.沒有患呼吸系統疾病的
人,其中
人在室外工作,
人在室內工作.
(1)現采用分層抽樣從室內工作的居民中抽取一個容量為
的樣本,將該樣本看成一個總體,從中隨機的抽取兩人,求兩人都有呼吸系統疾病的概率.
(2)你能否在犯錯誤率不超過
的前提下認為感染呼吸系統疾病與工作場所有關;
附表:
|
|
|
|
|
|
|
|
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,橢圓:
的離心率為
,y軸于橢圓相交于A、B兩點,
,C、D是橢圓上異于A、B的任意兩點,且直線AC、BD相交于點M,直線AD、BC相交于點N.
求橢圓的方程;
求直線MN的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓
的離心率為
,橢圓
上一點
到左右兩個焦點
的距離之和是4.
(1)求橢圓的方程;
(2)已知過
的直線與橢圓
交于
兩點,且兩點與左右頂點不重合,若
,求四邊形
面積的最大值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某少數民族的刺繡有著悠久的歷史,如圖4①,②,③,④為她們刺繡最簡單的四個圖案,這些圖案都是由小正方形構成,小正方形數越多刺繡越漂亮.現按同樣的規律刺繡(小正方形的擺放規律相同),設第n個圖形包含f(n)個小正方形.
![]()
(1)求出f(5)的值;
(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關系式,并根據你得到的關系式求出f(n)的表達式;
(3)求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知若橢圓
:
(
)交
軸于
,
兩點,點
是橢圓
上異于
,
的任意一點,直線
,
分別交
軸于點
,
,則
為定值
.
(1)若將雙曲線與橢圓類比,試寫出類比得到的命題;
(2)判定(1)類比得到命題的真假,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com