【題目】如圖,四棱錐P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分別是AB,PD的中點,且PA=AD.
![]()
(Ⅰ)求證:AF∥平面PEC;
(Ⅱ)求證:平面PEC⊥平面PCD.
【答案】(Ⅰ)見解析(Ⅱ)見解析
【解析】
(Ⅰ)取PC的中點G,連結FG、EG,AF∥EG又EG平面PCE,AF平面PCE,AF∥平面PCE; (Ⅱ)由(Ⅰ)得EG∥AF,只需證明AF⊥面PDC,即可得到平面PEC⊥平面PCD.
證明:(Ⅰ)取PC的中點G,連結FG、EG,
∴FG為△CDP的中位線,FG∥CD,FG=
CD.
∵四邊形ABCD為矩形,E為AB的中點,∴AE∥CD,AE=
CD.
∴FG=AE,FG∥AE,∴四邊形AEGF是平行四邊形,
∴AF∥EG又EG平面PCE,AF平面PCE,
∴AF∥平面PCE;
(Ⅱ)∵PA=AD.∴AF⊥PD
PA⊥平面ABCD,∴PA⊥CD,
又因為CD⊥AB,AP∩AB=A,∴CD⊥面APD
∴CD⊥AF,且PD∩CD=D,∴AF⊥面PDC
由(Ⅰ)得EG∥AF,∴EG⊥面PDC
又EG平面PCE,∴平面PEC⊥平面PCD.
![]()
科目:高中數學 來源: 題型:
【題目】七巧板是一種古老的中國傳統智力玩具,顧名思義,是由七塊板組成的.而這七塊板可拼成許多圖形.如圖中的正方形七巧板就是由五塊等腰直角三角形、一塊正方形和一塊平行四邊形組成的.若向正方形內隨機的拋10000顆小米粒(大小忽略不計),則落在陰影部分的小米粒大約為( )
![]()
A.3750B.2500C.1875D.1250
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知半徑為5的圓的圓心在x軸上,圓心的橫坐標是整數,且與直線4x+3y﹣29=0相切.
(1)求圓的方程;
(2)設直線ax﹣y+5=0(a>0)與圓相交于A,B兩點,求實數a的取值范圍;
(3)在(2)的條件下,是否存在實數a,使得弦AB的垂直平分線l過點P(﹣2,4),若存在,求出實數a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的一個頂點為
,焦點在
軸上,中心在原點.若橢圓短軸的上頂點
到直線
的距離為
.
(1)求橢圓的標準方程;
(2)若橢圓的下頂點為
,設直線
與橢圓相交于不同的兩點
,
,當
時,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系
中,圓
的參數方程為
(
為參數),以
為極點,
軸的非負半軸為極軸建極坐標系,直線
的極坐標方程為![]()
(Ⅰ)求
的極坐標方程;
(Ⅱ)射線
與圓C的交點為
與直線
的交點為
,求
的范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】李克強總理在2018年政府工作報告指出,要加快建設創新型國家,把握世界新一輪科技革命和產業變革大勢,深入實施創新驅動發展戰略,不斷增強經濟創新力和競爭力.某手機生產企業積極響應政府號召,大力研發新產品,爭創世界名牌.為了對研發的一批最新款手機進行合理定價,將該款手機按事先擬定的價格進行試銷,得到一組銷售數據
,如表所示:
單價 |
|
|
|
|
|
|
銷量 |
|
|
|
|
|
|
已知
.
(1)若變量
具有線性相關關系,求產品銷量
(百件)關于試銷單價
(千元)的線性回歸方程
;
(2)用(1)中所求的線性回歸方程得到與
對應的產品銷量的估計值
.當銷售數據
對應的殘差的絕對值
時,則將銷售數據
稱為一個“好數據”.現從
個銷售數據中任取
個子,求“好數據”個數
的分布列和數學期望
.
(參考公式:線性回歸方程中
的估計值分別為
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com