已知函數
.
(1)求
在區間
上的最大值;
(2)若函數
在區間
上存在遞減區間,求實數m的取值范圍.
【解析】本試題主要考查了導數在研究函數中的運用,求解函數的最值。第一問中,利用導數求解函數的最值,首先求解導數
,然后利用極值和端點值比較大小,得到結論。第二問中,我們利用函數在
上存在遞減區間,即
在
上有解,即
,即可,可得到。
解:(1)
,
令
,解得
……………3分
![]()
,
在
上為增函數,在
上為減函數,
.
…………6分
(2)![]()
在
上存在遞減區間,
在
上有解,……9分
![]()
在
上有解,
![]()
,
所以,實數
的取值范圍為
科目:高中數學 來源:2011-2012學年人教版高一(上)期中數學試卷(解析版) 題型:解答題
查看答案和解析>>
科目:高中數學 來源:2010年上海市奉賢區高考數學二模試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數學 來源:2013屆浙江省高二下期中數學試卷(解析版) 題型:解答題
已知函數
令![]()
(1)求
的定義域;
(2)判斷函數
的奇偶性,并予以證明;
(3)若
,猜想
之間的關系并證明.
查看答案和解析>>
科目:高中數學 來源:2010-2011學年北京市高三入學測試數學卷 題型:解答題
(本小題滿分12分)
已知函數
,
(1)求函數
的定義域;(2)證明:
是偶函數;
(3)若
,求
的取值范圍。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com