【題目】某學(xué)校為調(diào)查該校學(xué)生每周使用手機(jī)上網(wǎng)的時(shí)間,隨機(jī)收集了若干位學(xué)生每周使用手機(jī)上網(wǎng)的時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)),將樣本數(shù)據(jù)分組為
,繪制了如下圖所示的頻率分布直方圖,已知
內(nèi)的學(xué)生有5人.
![]()
(1)求樣本容量
,并估計(jì)該校學(xué)生每周平均使用手機(jī)上網(wǎng)的時(shí)間;
(2)將使用手機(jī)上網(wǎng)的時(shí)間在
內(nèi)定義為“長(zhǎng)時(shí)間看手機(jī)”;使用手機(jī)上網(wǎng)的時(shí)間在
內(nèi)定義為“不長(zhǎng)時(shí)間看手機(jī)”.已知在樣本中有
位學(xué)生不近視,其中“不長(zhǎng)時(shí)間看手機(jī)”的有
位學(xué)生.請(qǐng)將下面的
列聯(lián)表補(bǔ)充完整,并判斷能否在犯錯(cuò)誤的概率不超過(guò)
的前提下認(rèn)為該校學(xué)生長(zhǎng)時(shí)間看手機(jī)與近視有關(guān).
近視 | 不近視 | 合計(jì) | |
長(zhǎng)時(shí)間看手機(jī) | |||
不長(zhǎng)時(shí)間看手機(jī) | 15 | ||
合計(jì) | 25 |
參考公式和數(shù)據(jù):
.
|
|
|
|
|
|
|
|
|
|
|
|
【答案】(1)5.8;(2)見(jiàn)解析
【解析】
(1)因?yàn)槭褂檬謾C(jī)上網(wǎng)的時(shí)間在
內(nèi)的有5人,對(duì)應(yīng)的頻率為
,
所以樣本容量
,
由題可得該校學(xué)生每周平均使用手機(jī)上網(wǎng)的時(shí)間約為![]()
小時(shí).
(2)由題可得樣本中“不長(zhǎng)時(shí)間看手機(jī)”的學(xué)生有
位,
由此可得補(bǔ)充完整的
列聯(lián)表如下:
近視 | 不近視 | 合計(jì) | ||
長(zhǎng)時(shí)間看手機(jī) | 65 | 10 | 75 | |
不長(zhǎng)時(shí)間看手機(jī) | 10 | 15 | 25 | |
合計(jì) | 75 | 25 | 100 |
因此
的觀測(cè)值
,
所以在犯錯(cuò)誤的概率不超過(guò)
的前提下認(rèn)為該校學(xué)生長(zhǎng)時(shí)間看手機(jī)與近視有關(guān).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是矩形,面PAD⊥底面ABCD,且△PAD是邊長(zhǎng)為2的等邊三角形,PC=
,M在PC上,且PA∥面BDM. ![]()
(1)求直線(xiàn)PC與平面BDM所成角的正弦值;
(2)求平面BDM與平面PAD所成銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且
,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2 ![]()
(1)證明:AG∥平面BDE;
(2)求平面BDE和平面BAG所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,根據(jù)經(jīng)驗(yàn),其次品率
與日產(chǎn)量
(萬(wàn)件)之間滿(mǎn)足關(guān)系,
(其中
為常數(shù),且
,已知每生產(chǎn)1萬(wàn)件合格的產(chǎn)品以盈利2萬(wàn)元,但每生產(chǎn)1萬(wàn)件次品將虧損1萬(wàn)元(注:次品率=次品數(shù)/生產(chǎn)量, 如
表示每生產(chǎn)10件產(chǎn)品,有1件次品,其余為合格品).
(1)試將生產(chǎn)這種產(chǎn)品每天的盈利額
(萬(wàn)元)表示為日產(chǎn)量
(萬(wàn)件)的函數(shù);
(2)當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤(rùn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列
滿(mǎn)足
.
(1)求
的通項(xiàng)公式;
(2)求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=sinωx(ω>0),將f(x)的圖象向左平移
個(gè)單位從長(zhǎng)度后,所得圖象與原函數(shù)的圖象重合,則ω的最小值為( )
A.![]()
B.3
C.6
D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次抽樣調(diào)查中測(cè)得樣本的6組數(shù)據(jù),得到一個(gè)變量
關(guān)于
的回歸方程模型,其對(duì)應(yīng)的數(shù)值如下表:
| 2 | 3 | 4 | 5 | 6 | 7 |
|
|
|
|
|
|
|
(1)請(qǐng)用相關(guān)系數(shù)
加以說(shuō)明
與
之間存在線(xiàn)性相關(guān)關(guān)系(當(dāng)
時(shí),說(shuō)明
與
之間具有線(xiàn)性相關(guān)關(guān)系);
(2)根據(jù)(1)的判斷結(jié)果,建立
關(guān)于
的回歸方程并預(yù)測(cè)當(dāng)
時(shí),對(duì)應(yīng)的
值為多少(
精確到
).
附參考公式:回歸方程
中斜率和截距的最小二乘法估計(jì)公式分別為:
,
,相關(guān)系數(shù)
公式為:
.
參考數(shù)據(jù):
,
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是
和
.假設(shè)兩人射擊是否擊中目標(biāo),相互之間沒(méi)有影響;每次射擊是否擊中目標(biāo),相互之間沒(méi)有影響.
(1)求甲射擊4次,至少1次未擊中目標(biāo)的概率;
(2)求兩人各射擊4次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)3次的概率.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com