【題目】若a,b是異面直線,直線c∥a,則c與b的位置關(guān)系是( )
A.異面或相交
B.相交
C.異面
D.平行
【答案】A
【解析】解:在正方體ABCD﹣A1B1C1D1中,
取AB=a,CC1=b,
當(dāng)CD為c時,滿足a,b是異面直線,直線c∥a,
此時b∩c=C,直線c與b相交,
當(dāng)A1B1為c時,滿足a,b是異面直線,直線c∥a,
此時直線c與b是異面直線.
∴若a,b是異面直線,直線c∥a,則c與b的位置關(guān)系是異面或相交.
故選:A.![]()
【考點精析】本題主要考查了空間中直線與直線之間的位置關(guān)系的相關(guān)知識點,需要掌握相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知矩形ABCD,AB=1,BC=
. 將△ABD沿矩形的對角線BD所在的直線進行翻折,在翻折過程中( )
A.存在某個位置,使得直線AC與直線BD垂直
B.存在某個位置,使得直線AB與直線CD垂直
C.存在某個位置,使得直線AD與直線BC垂直
D.對任意位置,三對直線“AC與BD”,“AB與CD”,“AD與BC”均不垂直
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017福建三明5月質(zhì)檢】如圖,在四棱錐
中,側(cè)面
底面
,底面
是平行四邊形,
,
,
,
為
的中點,點
在線段
上.
![]()
(Ⅰ)求證:
;
(Ⅱ)試確定點
的位置,使得直線
與平面
所成的角和直線
與平面
所成的角相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2x+a
(1)當(dāng)
時,求不等式f(x)>1的解集;
(2)若對于任意x∈[1,+∞),f(x)>0恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,過橢圓M:
(a>b>0)右焦點的直線x+y﹣
=0交M于A,B兩點,P為AB的中點,且OP的斜率為
.
(Ⅰ)求M的方程
(Ⅱ)C,D為M上的兩點,若四邊形ACBD的對角線CD⊥AB,求四邊形ACBD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了得到函數(shù)y=cos(
x+
)的圖象,只要把y=cos
x的圖象上所有的點( )
A.向左平移
個單位長度
B.向右平移
個單位長度
C.向左平移
個單位長度
D.向右平移
個單位長度
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為,且Sn=n2+n,
(1)求數(shù)列{an}的通項公式;
(2)令bn=3an , 求證:數(shù)列{bn}是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=3ax2﹣2(a+b)x+b,(0≤x≤1)其中a>0,b為任意常數(shù).
(I)若b=
,f(x)=|x﹣
|在x∈[0,1]有兩個不同的解,求實數(shù)a的范圍.
(II)當(dāng)|f(0)|≤2,|f(1)|≤2時,求|f(x)|的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com