【題目】為了得到函數(shù)y=cos(
x+
)的圖象,只要把y=cos
x的圖象上所有的點( )
A.向左平移
個單位長度
B.向右平移
個單位長度
C.向左平移
個單位長度
D.向右平移
個單位長度
【答案】C
【解析】解:由于cos(
x+
)=cos
(x+
),
故把y=cos
x的圖象上所有的點向左平移
個單位長度,可得函數(shù)y=cos
(x+
)=cos(
x+
)的圖象,
故選:C.
【考點精析】本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識點,需要掌握圖象上所有點向左(右)平移
個單位長度,得到函數(shù)
的圖象;再將函數(shù)
的圖象上所有點的橫坐標(biāo)伸長(縮短)到原來的
倍(縱坐標(biāo)不變),得到函數(shù)
的圖象;再將函數(shù)
的圖象上所有點的縱坐標(biāo)伸長(縮短)到原來的
倍(橫坐標(biāo)不變),得到函數(shù)
的圖象才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓C過點(1,0),且于直線x=﹣1相切.
(1)求圓心C的軌跡M的方程;
(2)A,B是M上的動點,O是坐標(biāo)原點,且![]()
![]()
, 求證:直線AB過定點,并求出該點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017福建4月質(zhì)檢】如圖,三棱柱
中,
,
,
分別為棱
的中點.
![]()
(1)在平面
內(nèi)過點
作
平面
交
于點
,并寫出作圖步驟,但不要求證明.
(2)若側(cè)面
側(cè)面
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x2+y2﹣4x﹣2y﹣k=0表示圖形為圓.
(1)若已知曲線關(guān)于直線x+y﹣4=0的對稱圓與直線6x+8y﹣59=0相切,求實數(shù)k的值;
(2)若k=15,求過該曲線與直線x﹣2y+5=0的交點,且面積最小的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正三棱錐P﹣ABC底面邊長為6,底邊BC在平面α內(nèi),繞BC旋轉(zhuǎn)該三棱錐,若某個時刻它在平面α上的正投影是等腰直角三角形,則此三棱錐高的取值范圍是( ) ![]()
A.(0,
]
B.(0,
]∪[
,3]
C.(0,
]
D.(0,
]∪[3,
]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,BC=2,原點O是BC的中點,點A的坐標(biāo)為 (
,0),點D在平面yOz上,且∠BDC=90°,∠DCB=30°. ![]()
(1)求向量
的坐標(biāo)
(2)求向量
的夾角的余弦值大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四面體ABCD中,△ABC是正三角形,AD=CD.
![]()
(1)證明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD.若E為棱BD上與D不重合的點,且AE⊥EC,求四面體ABCE與四面體ACDE的體積比.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com