【題目】已知橢圓
(
),以橢圓內一點
為中點作弦
,設線段
的中垂線與橢圓相交于
,
兩點.
(Ⅰ)求橢圓的離心率;
(Ⅱ)試判斷是否存在這樣的
,使得
,
,
,
在同一個圓上,并說明理由.
科目:高中數學 來源: 題型:
【題目】有一個轉盤游戲,轉盤被平均分成10等份(如圖所示),轉動轉盤,當轉盤停止后,指針指向的數字即為轉出的數字.游戲規則如下:兩個人參加,先確定猜數方案,甲轉動轉盤,乙猜,若猜出的結果與轉盤轉出的數字所表示的特征相符,則乙獲勝,否則甲獲勝.猜數方案從以下三種方案中選一種:
A.猜“是奇數”或“是偶數”
B.猜“是4的整數倍數”或“不是4的整數倍數”
C.猜“是大于4的數”或“不是大于4的數”
請回答下列問題:
(1)如果你是乙,為了盡可能獲勝,你將選擇哪種猜數方案,并且怎樣猜?為什么?
(2)為了保證游戲的公平性,你認為應制定哪種猜數方案?為什么?
(3)請你設計一種其他的猜數方案,并保證游戲的公平性.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】國際奧委會將于2017年9月15日在秘魯利馬召開130次會議決定2024年第33屆奧運會舉辦地。目前德國漢堡、美國波士頓等申辦城市因市民擔心賽事費用超支而相繼退出。某機構為調查我國公民對申辦奧運會的態度,選了某小區的100位居民調查結果統計如下:
![]()
(1)根據已有數據,把表格數據填寫完整;
(2)能否在犯錯誤的概率不超過5%的前提下認為不同年齡與支持申辦奧運無關?
(3)已知在被調查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現從這5名女性中隨機抽取3人,求至多有1位教師的概率.
附:
,
.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
,
.
(Ⅰ)若
和
在
有相同的單調區間,求
的取值范圍;
(Ⅱ)令
(
),若
在定義域內有兩個不同的極值點.
(i)求
的取值范圍;
(ii)設兩個極值點分別為
,
,證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校要用甲、乙、丙三輛校車把教職工從老校區接到校本部,已知從老校區到校本部有兩條公路,校車走公路①時堵車的概率為
,校車走公路②時堵車的概率為p.若甲、乙兩輛校車走公路①,丙校車由于其他原因走公路②,且三輛校車是否堵車相互之間沒有影響.
(1)若三輛校車中恰有一輛校車被堵的概率為
,求走公路②堵車的概率;
(2)在(1)的條件下,求三輛校車中被堵車輛的輛數ξ的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
:
的右焦點為
,且點
在橢圓
上.
⑴求橢圓
的標準方程;
⑵已知動直線
過點
且與橢圓
交于
兩點.試問
軸上是否存在定點
,使得
恒成立?若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【選修4-4:坐標系與參數方程】
在平面直角坐標系
中,以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系.已知曲線
的極坐標方程為
.傾斜角為
,且經過定點
的直線
與曲線
交于
兩點.
(Ⅰ)寫出直線
的參數方程的標準形式,并求曲線
的直角坐標方程;
(Ⅱ)求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市春節期間7家超市的廣告費支出
(萬元)和銷售額
(萬元)數據如下:
![]()
(1)若用線性回歸模型擬合
與
的關系,求
關于
的線性回歸方程;
(2)用二次函數回歸模型擬合
與
的關系,可得回歸方程:
,計算二次函數回歸模型和線性回歸模型的
分別約為0.75和0.97,請用
說明選擇個回歸模型更合適,并用此模型預測
超市廣告費支出為8萬元時的銷售額.
參考數據:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com