【題目】(理)在長(zhǎng)方體
中,
,
,
,點(diǎn)
在棱
上移動(dòng).
![]()
(1)探求
多長(zhǎng)時(shí),直線
與平面
成
角;
(2)點(diǎn)
移動(dòng)為棱
中點(diǎn)時(shí),求點(diǎn)
到平面
的距離.
【答案】(1)
(2)![]()
【解析】
(1)法一:先找出直線
與平面
所成角,再根據(jù)直角三角形解
;法二:建立空間直角坐標(biāo)系,先求平面法向量,再利用向量數(shù)量積求向量夾角,最后解方程得結(jié)果;
(2)建立空間直角坐標(biāo)系,先求平面法向量,再利用向量數(shù)量積求點(diǎn)面距.
解:(1)法一:長(zhǎng)方體
中,因?yàn)辄c(diǎn)
在棱
上移動(dòng),
所以
平面
,從而
為直線
與平面
所成的平面角,
中,![]()
.
法二:以
為坐標(biāo)原點(diǎn),射線
依次為
軸軸,建立空間直角坐標(biāo)系,則點(diǎn)
,平面
的法向量為
,設(shè)
,得
,由
,得
,故
(2)以
為坐標(biāo)原點(diǎn),射線
依次為
軸,建立空間直角坐標(biāo)系,則點(diǎn)
,
,
,
從而
,
,
設(shè)平面
的法向量為
,由![]()
![]()
令
,所以點(diǎn)
到平面
的距離為![]()
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線
的參數(shù)方程為
(
為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線
上的點(diǎn)按坐標(biāo)變換
得到曲線
,以原點(diǎn)為極點(diǎn),
軸的正半軸為極軸,建立極坐標(biāo)系.設(shè)
點(diǎn)的極坐標(biāo)為
.
(1)求曲線
的極坐標(biāo)方程;
(2)若過(guò)點(diǎn)
且傾斜角為
的直線
與曲線
交于
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專(zhuān)業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間內(nèi)沒(méi)有發(fā)生大規(guī)模群體感染的標(biāo)志是“連續(xù)10日,每天新增疑似病例不超過(guò)7人”.過(guò)去10日,甲、乙、丙、丁四地新增疑似病例數(shù)據(jù)信息如下:
甲地:總體平均數(shù)為3,中位數(shù)為4;
乙地:總體平均數(shù)為1,總體方差大于0;
丙地:總體平均數(shù)為2,總體方差為3;
丁地:中位數(shù)為2,眾數(shù)為3;
則甲、乙、兩、丁四地中,一定沒(méi)有發(fā)生大規(guī)模群體感染的是( )
A.甲地B.乙地C.丙地D.丁地
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:
的左、右焦點(diǎn)分別是
,點(diǎn)
,若
的內(nèi)切圓的半徑與外接圓的半徑的比是
.
(1)求橢圓C的方程;
(2)點(diǎn)M是橢圓C的左頂點(diǎn),P、Q是橢圓上異于左、右頂點(diǎn)的兩點(diǎn),設(shè)直線MP、MQ的斜率分別為
、
,若
,試問(wèn)直線PQ是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求該定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐
中,
,
,
,
為正三角形,且
.
![]()
(1)證明:直線
平面
;
(2)若四棱錐
的體積為
,
是線段
的中點(diǎn),求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校決定為本校上學(xué)所需時(shí)間不少于30分鐘的學(xué)生提供校車(chē)接送服務(wù).為了解學(xué)生上學(xué)所需時(shí)間,從全校600名學(xué)生中抽取50人統(tǒng)計(jì)上學(xué)所需時(shí)間(單位:分鐘),將600人隨機(jī)編號(hào)為001,002,…,600,抽取的50名學(xué)生上學(xué)所需時(shí)間均不超過(guò)60分鐘,將上學(xué)所需時(shí)間按如下方式分成六組,第一組上學(xué)所需時(shí)間在[0,10),第二組上學(xué)所需時(shí)間在[10,20)…,第六組上學(xué)所需時(shí)間在[50,60],得到各組人數(shù)的頻率分布直方圖,如下圖
(1)若抽取的50個(gè)樣本是用系統(tǒng)抽樣的方法得到,且第一個(gè)抽取的號(hào)碼為006,則第五個(gè)抽取的號(hào)碼是多少?
(2)若從50個(gè)樣本中屬于第四組和第六組的所有人中隨機(jī)抽取2人,設(shè)他們上學(xué)所需時(shí)間分別為a、b,求滿(mǎn)足
的事件的概率;
![]()
(3)設(shè)學(xué)校配備的校車(chē)每輛可搭載40名學(xué)生,請(qǐng)根據(jù)抽樣的結(jié)果估計(jì)全校應(yīng)有多少輛這樣的校車(chē)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)
在
上,以
為切點(diǎn)的
的切線的斜率為
,過(guò)
外一點(diǎn)
(不在
軸上)作
的切線
、
,點(diǎn)
、
為切點(diǎn),作平行于
的切線
(切點(diǎn)為
),點(diǎn)
、
分別是與
、
的交點(diǎn)(如圖):
![]()
(1)用
、
的縱坐標(biāo)
、
表示直線
的斜率;
(2)若直線
與
的交點(diǎn)為
,證明
是
的中點(diǎn);
(3)設(shè)三角形
面積為
,若將由過(guò)
外一點(diǎn)的兩條切線及第三條切線(平行于兩切線切點(diǎn)的連線)圍成的三角形叫做“切線三角形”,如
,再由
、
作“切線三角形”,并依這樣的方法不斷作切線三角形……,試?yán)?/span>“切線三角形”的面積和計(jì)算由拋物線及
所圍成的陰影部分的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C對(duì)應(yīng)的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大小;
(2)若△ABC的面積S=5
,b=5,求sinBsinC的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com