設(shè)函數(shù)
.
(Ⅰ)證明:
時,函數(shù)
在
上單調(diào)遞增;
(Ⅱ)證明:
.
(Ⅰ)詳見解析;(Ⅱ)詳見解析.
解析試題分析:(Ⅰ)導(dǎo)數(shù)法,令
,
,再由
得出
,從而得出結(jié)論;(Ⅱ)用分析法證明,要證
,只需證
,接著
構(gòu)造新函數(shù),用導(dǎo)數(shù)法求解.
試題解析:(Ⅰ)證明:
,則
,
,
∵
,
,
∴
. (3分)
∴
在
單調(diào)遞增 ∴
,即
,
從而
在
上單調(diào)遞增;. (7分)
(Ⅱ)證明:要證
,
只需證
,即
,證明如下:
設(shè)
,則
,(9分)
已知當(dāng)
時,
,
單調(diào)遞減;
當(dāng)
時,
,
單調(diào)遞增.
∴
在
上的最小值為
,即
, (12分)
又由(Ⅰ),當(dāng)
且
時,
,
∴
,即不等式
恒成立. (14分)
考點:導(dǎo)數(shù)法求解函數(shù)的單調(diào)性,最值, 構(gòu)造法.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(
≠0,
∈R)
(Ⅰ)若
,求函數(shù)
的極值和單調(diào)區(qū)間;
(Ⅱ)若在區(qū)間(0,e]上至少存在一點
,使得
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)若函數(shù)
在
處取得極值,且函數(shù)
只有一個零點,求
的取值范圍.
(2)若函數(shù)
在區(qū)間
上不是單調(diào)函數(shù),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
。
(1)當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間;
(2)求證:當(dāng)
時,對所有的
都有
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
![]()
(Ⅰ)若函數(shù)
在
處的切線垂直
軸,求
的值;
(Ⅱ)若函數(shù)
在區(qū)間
上為增函數(shù),求
的取值范圍;
(Ⅲ)討論函數(shù)
的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
,且
在點(1,
)處的切線方程為
。
(1)求
的解析式;
(2)求函數(shù)
的單調(diào)遞增區(qū)間;
(3)設(shè)函數(shù)
,若方程
有且僅有四個解,求實數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
.
(1)若
,
對一切
恒成立,求
的最大值;
(2)設(shè)
,且
、
是曲線
上任意兩點,若對任意
,直線
的斜率恒大于常數(shù)
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)已知函數(shù)
.
(1)若函數(shù)
在
上單調(diào)遞增,求實數(shù)
的取值范圍.
(2)記函數(shù)
,若
的最小值是
,求函數(shù)
的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)![]()
(1) 當(dāng)
時,求
的單調(diào)區(qū)間;
(2) 若當(dāng)
時,![]()
恒成立,求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com