【題目】如圖,三棱柱
中,四邊形
是矩形,
是
的中點,
,
,平面
平面
.
![]()
(1)求證:
平面
;
(2)求銳二面角
的平面角的大小.
科目:高中數學 來源: 題型:
【題目】已知橢圓
:
的離心率為
,橢圓的四個頂點構成的四邊形面積為
.
(1)求橢圓
的方程;
(2)若
是橢圓上的一點,過
且斜率等于
的直線與橢圓
交于另一點
,點
關于原點的對稱點為
.求
面積的最大值及取最大值時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠有兩個車間生產同一種產品,第一車間有工人200人,第二車間有工人400人,為比較兩個車間工人的生產效率,采用分層抽樣的方法抽取工人,并對他們中每位工人生產完成一件產品的時間(單位:min)分別進行統計,得到下列統計圖表(按照[55,65),[65,75),[75,85),[85,95]分組).
分組 | 頻數 |
[55,65) | 2 |
[65,75) | 4 |
[75,85) | 10 |
[85,95] | 4 |
合計 | 20 |
第一車間樣本頻數分布表
(Ⅰ)分別估計兩個車間工人中,生產一件產品時間小于75min的人數;
(Ⅱ)分別估計兩車間工人生產時間的平均值,并推測哪個車間工人的生產效率更高?(同一組中的數據以這組數據所在區間中點的值作代表)
(Ⅲ)從第一車間被統計的生產時間小于75min的工人中,隨機抽取3人,記抽取的生產時間小于65min的工人人數為隨機變量X,求X的分布列及數學期望.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系
中,拋物線
的準線為
,其焦點為F,點B是拋物線C上橫坐標為
的一點,若點B到
的距離等于
.
(1)求拋物線C的方程,
(2)設A是拋物線C上異于頂點的一點,直線AO交直線
于點M,拋物線C在點A處的切線m交直線
于點N,求證:以點N為圓心,以
為半徑的圓經過
軸上的兩個定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
,
.
(1)當
時,試討論方程
的解的個數;
(2)若曲線
和
上分別存在點
,
,使得
是以原點
為直角頂點的直角三角形,且斜邊
的中點在
軸上,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有一片產量很大的水果種植園,在臨近成熟時隨機摘下某品種水果100個,其質量(均在l至11kg)頻數分布表如下(單位: kg):
分組 | | | | | |
頻數 | 10 | 15 | 45 | 20 | 10 |
以各組數據的中間值代表這組數據的平均值,將頻率視為概率.
(1)由種植經驗認為,種植園內的水果質量
近似服從正態分布
,其中
近似為樣本平均數
近似為樣本方差
.請估算該種植園內水果質量在
內的百分比;
(2)現在從質量為
的三組水果中用分層抽樣方法抽取14個水果,再從這14個水果中隨機抽取3個.若水果質量
的水果每銷售一個所獲得的的利潤分別為2元,4元,6元,記隨機抽取的3個水果總利潤為
元,求
的分布列及數學期望.
附:
,則
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知各項均為正數的等比數列
的公比
,且
,
是方程
的兩根,記
的前n項和為
.
(1)若
,
,
依次成等差數列,求m的值;
(2)設
,數列
的前n項和為
,若
,求n的最小值;
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com