已知函數(shù)f(x)=x3+x-16.求曲線(xiàn)y=f(x)在點(diǎn)(2,-6)處的切線(xiàn)的方程
y=13x-32
解析試題分析:根據(jù)導(dǎo)數(shù)的幾何意義,先求函數(shù)
的導(dǎo)函數(shù)
,進(jìn)而求出
,得到曲線(xiàn)![]()
在點(diǎn)
處的切線(xiàn)的斜率,由點(diǎn)斜式得切線(xiàn)方程.
試題解析:
∵f ′(x)=3x2+1, 4分
∴f(x)在點(diǎn)(2,-6)處的切線(xiàn)的斜率為k=f ′(2)=13. 9分
∴切線(xiàn)的方程為y=13x-32. 12分
考點(diǎn):1、導(dǎo)數(shù)的幾何意義;2、直線(xiàn)的點(diǎn)斜式方程.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知a∈R,函數(shù)f(x)=4x3-2ax+a.
(1)求f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)0≤x≤1時(shí),f(x)+|2-a|>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=
在點(diǎn)(-1,f(-1))處的切線(xiàn)方程為x+y+3=0.
(1)求函數(shù)f(x)的解析式.
(2)設(shè)g(x)=lnx.求證:g(x)≥f(x)在[1,+∞)上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=x3+x-16.
(1)求曲線(xiàn)y=f(x)在點(diǎn)(2,-6)處的切線(xiàn)方程.
(2)如果曲線(xiàn)y=f(x)的某一切線(xiàn)與直線(xiàn)y=-
x+3垂直,求切點(diǎn)坐標(biāo)與切線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=
x3-x2+ax-a(a∈R).
(1)當(dāng)a=-3時(shí),求函數(shù)f(x)的極值.
(2)若函數(shù)f(x)的圖象與x軸有且只有一個(gè)交點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
求下列各函數(shù)的導(dǎo)數(shù):
(1)y=(x+1)(x+2)(x+3).
(2)y=
+
.
(3)y=e-xsin2x.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(1)當(dāng)
時(shí),求曲線(xiàn)
在點(diǎn)
的切線(xiàn)方程;
(2)對(duì)一切
,
恒成立,求實(shí)數(shù)
的取值范圍;
(3)當(dāng)
時(shí),試討論
在
內(nèi)的極值點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,其中
,
(1)當(dāng)
時(shí),求曲線(xiàn)
在點(diǎn)
處的切線(xiàn)方程;
(2)討論
的單調(diào)性;
(3)若
有兩個(gè)極值點(diǎn)
和
,記過(guò)點(diǎn)
的直線(xiàn)的斜率為
,問(wèn)是否存在
,使得
?若存在,求出
的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)f(x)=axn(1-x)+b(x>0),n為正整數(shù),a,b為常數(shù).曲線(xiàn)y=f(x)在(1,f(1))處的切線(xiàn)方程為x+y=1.
(1)求a,b的值;
(2)求函數(shù)f(x)的最大值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com