如圖,棱錐P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=
.
(Ⅰ)求證:BD⊥平面PAC;
(Ⅱ)求二面角P—CD—B的大小;
(Ⅲ)求點C到平面PBD的距離.
![]()
(1)證明見解析(2)450(3)![]()
方法一:
證:(Ⅰ)在Rt△BAD中,AD=2,BD=
,
∴AB=2,ABCD為正方形,
因此BD⊥AC.
∵PA⊥平面ABCD,BD??平面ABCD,
∴BD⊥PA .
又∵PA∩AC=A
∴BD⊥平面PAC.
解:(Ⅱ)由PA⊥面ABCD,知AD為PD在平面ABCD的射影,又CD⊥AD,
∴CD⊥PD,知∠PDA為二面角P—CD—B的平面角.
又∵PA=AD,
∴∠PDA=450 .
(Ⅲ)∵PA=AB=AD=2
∴PB=PD=BD=
設C到面PBD的距離為d,由
,
有
,
即
,
得
方法二:
證:(Ⅰ)建立如圖所示的直角坐標系,
則A(0,0,0)、D(0,2,0)、P(0,0,2).
在Rt△BAD中,AD=2,BD=
,
∴AB=2.
∴B(2,0,0)、C(2,2,0),
∴
∵![]()
即BD⊥AP,BD⊥AC,又AP∩AC=A,
∴BD⊥平面PAC.
解:(Ⅱ)由(Ⅰ)得
.
設平面PCD的法向量為
,則
,
即
,∴![]()
故平面PCD的法向量可取為
∵PA⊥平面ABCD,∴
為平面ABCD的法向量.
設二面角P—CD—B的大小為q,依題意可得
,
∴q = 450 .
(Ⅲ)由(Ⅰ)得![]()
設平面PBD的法向量為
,則
,
即
,∴x=y=z
故平面PBD的法向量可取為
.
∵
,
∴C到面PBD的距離為
科目:高中數學 來源: 題型:
| 3 |
| 3 |
| 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
| 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com