如圖,四棱錐
中,
是正三角形,四邊形
是矩形,且平面
平面
,
,
.
![]()
(Ⅰ) 若點(diǎn)
是
的中點(diǎn),求證:
平面
;
(II)若點(diǎn)
為線段
的中點(diǎn),求二面角
的正切值.
(Ⅰ)證明:設(shè)
,
交于點(diǎn)
,連接
,易知
為
的中位線,
故
,又
平面
,
平面
,得
平面
.
(Ⅱ)解:過(guò)
做![]()
![]()
交
于
,過(guò)
作
交
于
,
由已知可知![]()
平面
,
,且
,
過(guò)
作
交
于
,連接
,由三垂線定理可知:
為所求角
如圖,![]()
平面
,
,由三垂線定理可知,![]()
在
中,斜邊
,
,得
,
在
中,
,得
,由等面積原理得,B到CE邊的高為![]()
則
; 在
中,
,則
,
故:![]()
法2建立如圖所示的空間直角坐標(biāo)系,
![]()
則
,
,
;
,![]()
(I)設(shè)平面
的法向量為
,![]()
則
即
;推出
即
,
平面
。
(II)
,故![]()
【解析】
試題分析:建立如圖所示的空間直角坐標(biāo)系,
![]()
則
,
,
;
,![]()
(I)設(shè)平面
的法向量為
,![]()
則
即
;
即![]()
令
,則
;又![]()
,故
即
,而
平面
所以
平面
。
(II)設(shè)平面
的法向量為
,
,
則
即
;
即![]()
令
,則
;由題可知平面
的法向量為![]()
故
,故![]()
考點(diǎn):本題主要考查立體幾何中的平行關(guān)系、角計(jì)算。
點(diǎn)評(píng):中檔題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計(jì)算。在計(jì)算問(wèn)題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟,利用空間向量,省去繁瑣的證明,也是解決立體幾何問(wèn)題的一個(gè)基本思路。對(duì)計(jì)算能力要求較高。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| 2 |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
| 3 |
| ||
| 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,四棱錐P—ABCD中,底面四邊形ABCD是正方形,側(cè)面PDC是邊長(zhǎng)為a的正
三角形,且平面PDC⊥底面ABCD,E為PC的中點(diǎn)。
|
(II)求點(diǎn)D到面PAB的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
![]()
(1)若平面PAB∩平面PCD=l,試判斷直線l與平面ABCD的關(guān)系,并加以證明;
(2)求平面PAB與平面PCD所成二面角的大小;
(3)當(dāng)AD為多長(zhǎng)時(shí),點(diǎn)D到平面PCE的距離為2?
(文)在正四棱柱ABCD—A1B1C1D1中,BB1=2AB=4,E、F分別是棱AB與BC的中點(diǎn).
![]()
(1)求二面角EFB1B的平面角的正切值.
(2)在棱DD1上能否找到一點(diǎn)M,使BM⊥平面B1EF?若能,試確定M的位置;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com