【題目】如下圖,在空間直角坐標(biāo)系
中,正四面體(各條棱均相等的三棱錐)
的頂點(diǎn)
分別在
軸,
軸,
軸上.
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求二面角
的余弦值.
【答案】(Ⅰ)見解析(Ⅱ)
.
【解析】試題分析:
(Ⅰ)設(shè)
,寫出A,B,C的坐標(biāo),再求出D點(diǎn)坐標(biāo),從而得
的坐標(biāo),只要它與平面
的法向量垂直,即可證明線面平行;
(Ⅱ)求二面角,可取AB的中點(diǎn)F,由能證明∠CFD是所求二面角的平面角,在
中由得余弦定理可得余弦值.也可求出二面角的兩個面的法向量,由法向量夾角的余弦可得二面角的余弦.
試題解析:
(Ⅰ)由
,易知
.
設(shè)
,則
,
,
,
,
設(shè)
點(diǎn)的坐標(biāo)為
,則由
,
可得
,
解得
,
所以
.
又平面
的一個法向量為
,
所以
,所以
平面
.
(Ⅱ)設(shè)
為
的中點(diǎn),連接
,
則
,
,
為二面角
的平面角.
由(Ⅰ)知,在
中,
,
,
則由余弦定理知
,即二面角
的余弦值為
.
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某購物網(wǎng)站對在7座城市的線下體驗店的廣告費(fèi)指出
(萬元)和銷售額
(萬元)的數(shù)據(jù)統(tǒng)計如下表:
城市 |
|
|
|
|
|
|
|
廣告費(fèi)支出 |
|
|
|
|
|
|
|
銷售額 |
|
|
|
|
|
|
|
(Ⅰ)若用線性回歸模型擬合
與
關(guān)系,求
關(guān)于
的線性回歸方程;
(Ⅱ)若用對數(shù)函數(shù)回歸模型擬合
與
的關(guān)系,可得回歸方程
,經(jīng)計算對數(shù)函數(shù)回歸模型的相關(guān)系數(shù)約為
,請說明選擇哪個回歸模型更合適,并用此模型預(yù)測
城市的廣告費(fèi)用支出
萬元時的銷售額.
參考數(shù)據(jù):
,
,
,
,
,
.
參考公式:
,
.
相關(guān)系數(shù)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市政府為了引導(dǎo)居民合理用水,決定全面實施階梯水價,階梯水價原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價:若用水量不超過12噸時,按4元/噸計算水費(fèi);若用水量超過12噸且不超過14噸時,超過12噸部分按6.60元/噸計算水費(fèi);若用水量超過14噸時,超過14噸部分按7.8元/噸計算水費(fèi).為了了解全市居民月用水量的分布情況,通過抽樣,獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照
分成8組,制成了如圖1所示的頻率分布直方圖.
![]()
(Ⅰ)假設(shè)用抽到的100戶居民月用水量作為樣本估計全市的居民用水情況.
(ⅰ)現(xiàn)從全市居民中依次隨機(jī)抽取5戶,求這5戶居民恰好3戶居民的月用水量都超過12噸的概率;
(ⅱ)試估計全市居民用水價格的期望(精確到0.01);
(Ⅱ)如圖2是該市居民李某2016年1~6月份的月用水費(fèi)
(元)與月份
的散點(diǎn)圖,其擬合的線性回歸方程是
.若李某2016年1~7月份水費(fèi)總支出為294.6元,試估計李某7月份的用水噸數(shù).
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)
,過點(diǎn)
且與
軸垂直的直線為
,
軸,交
于點(diǎn)
,直線
垂直平分
,交
于點(diǎn)
.
(1)求點(diǎn)
的軌跡方程;
(2)記點(diǎn)
的軌跡為曲線
,直線
與曲線
交于不同兩點(diǎn)
,且
(
為常數(shù)),直線
與
平行,且與曲線
相切,切點(diǎn)為
,試問
的面積是否為定值.若為定值,求出
的面積;若不是定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某次有600人參加的數(shù)學(xué)測試,其成績的頻數(shù)分布表如圖所示,規(guī)定85分及其以上為優(yōu)秀.
區(qū)間 | [75,80) | [80,85) | [85,90) | [90,95) | [95,100] |
人數(shù) | 36 | 114 | 244 | 156 | 50 |
(Ⅰ)現(xiàn)用分層抽樣的方法從這600人中抽取20人進(jìn)行成績分析,求其中成績?yōu)閮?yōu)秀的學(xué)生人數(shù);
(Ⅱ)在(Ⅰ)中抽取的20名學(xué)生中,要隨機(jī)選取2名學(xué)生參加活動,記“其中成績?yōu)閮?yōu)秀的人數(shù)”為
,求
的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018河南安陽市高三一模】如下圖,在平面直角坐標(biāo)系
中,直線
與直線
之間的陰影部分即為
,區(qū)域
中動點(diǎn)
到
的距離之積為1.
![]()
(Ⅰ)求點(diǎn)
的軌跡
的方程;
(Ⅱ)動直線
穿過區(qū)域
,分別交直線
于
兩點(diǎn),若直線
與軌跡
有且只有一個公共點(diǎn),求證:
的面積恒為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項等比數(shù)列{an}(n∈N*),首項a1=3,前n項和為Sn,且S3+a3、S5+a5,S4+a4成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{nan}的前n項和為Tn,若對任意正整數(shù)n,都有Tn∈[a,b],求b-a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn,等比數(shù)列{bn}的前n項和為Tn,a1=﹣1,b1=1,a2+b2=2.
(1)若a3+b3=5,求{bn}的通項公式;
(2)若T3=21,求S3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線
的極坐標(biāo)方程是
,以極點(diǎn)為原點(diǎn),極軸為
軸的正半軸建立極坐標(biāo)系,曲線
的參數(shù)方程為
(
為參數(shù)).
(1)寫出直線
的普通方程與曲線
的直角坐標(biāo)方程;
(2)設(shè)
為曲線
上任意一點(diǎn),求
的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com