(14分)已知離心率為

的橢圓

經(jīng)過點(diǎn)
P(1,

),

是橢圓
C的右頂點(diǎn).
(1)求橢圓
C的方程;
(2)若直線

與橢圓
C相交于
A、
B兩點(diǎn),求證:

.
(1)橢圓

的方程為

.(2)同解析
解:(1)根據(jù)題意得

,解得

,……(4分)
所以橢圓

的方程為

.……………………………………(6分)
(2)由

消去

并整理,得

,
設(shè)

,

,則

.…………(9分)
∵

,∴




,即

…………………………(14分)
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(14分)設(shè)
F1、
F2分別為橢圓
C:

=1(
a>
b>0)的左、右兩個(gè)焦點(diǎn).
(1)若橢圓
C上的點(diǎn)
A(1,

)到
F1、
F2兩點(diǎn)的距離之和等于4,寫出橢圓
C的方程和焦點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段
F1K的中點(diǎn)的軌跡方程;
(3)已知橢圓具有性質(zhì):若
M、
N是橢圓
C上關(guān)于原點(diǎn)對稱的兩個(gè)點(diǎn),點(diǎn)
P是橢圓上任意一點(diǎn),當(dāng)直線
PM、
PN的斜率都存在,并記為
kPM、
kPN時(shí),那么
kPM與
kPN之積是與點(diǎn)
P位置無關(guān)的定值.試對雙曲線

寫出具有類似特性的性質(zhì),并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(14分)若橢圓

:

的離心率等于

,拋物線

:

的焦點(diǎn)在橢圓的頂點(diǎn)上。
(1)求拋物線

的方程;
(2)求過點(diǎn)

的直線

與拋物線

交

、

兩點(diǎn),又過

、

作拋物線

的切線

、

,當(dāng)

時(shí),求直線

的方程。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓

的離心率是

,右焦點(diǎn)

到上頂點(diǎn)的距離為

,點(diǎn)

是線段

上的一個(gè)動(dòng)點(diǎn).
(1)求橢圓的方程;
(2)是否存在過點(diǎn)

且與

軸不垂直的直線

與橢圓交于

、

兩點(diǎn),使得

,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓

的焦點(diǎn)在y軸上,
則

的取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓

的左焦點(diǎn)

,右頂點(diǎn)A,上頂點(diǎn)B,且

,則橢圓的離心率是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知A

、B

,以AB為一腰作使∠DAB=

直角梯形ABCD,且

,CD中點(diǎn)的縱坐標(biāo)為1.若橢圓以A、B為焦點(diǎn)且經(jīng)過點(diǎn)D,則此橢圓的方程為
A.

B.

C.

D.

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
橢圓

的兩焦點(diǎn)為

,現(xiàn)將坐標(biāo)平面沿

軸折成二面角,二面角的度數(shù)為

,已知折起后兩焦點(diǎn)的距離

,則滿足題設(shè)的一組數(shù)值:
(只需寫出一組就可以,不必寫出所有情況)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
橢圓

的長軸長為
查看答案和解析>>