【題目】某車間有5名工人其中初級工2人,中級工2人,高級工1人
現從這5名工人中隨機抽取2名.
Ⅰ
求被抽取的2名工人都是初級工的概率;
Ⅱ
求被抽取的2名工人中沒有中級工的概率.
科目:高中數學 來源: 題型:
【題目】已知曲線C1:y=cos x,C2:y=sin (2x+
),則下面結論正確的是( )
A. 把C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移
個單位長度,得到曲線C2
B. 把C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向左平移
個單位長度,得到曲線C2
C. 把C1上各點的橫坐標縮短到原來的
倍,縱坐標不變,再把得到的曲線向右平移
個單位長度,得到曲線C2
D. 把C1上各點的橫坐標縮短到原來的
倍,縱坐標不變,再把得到的曲線向左平移
個單位長度,得到曲線C2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校100名學生期中考試數學成績的頻率分布直方圖如圖所示,其中成績分組區間如下:
組號 | 第一組 | 第二組 | 第三組 | 第四組 | 第五組 |
分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
![]()
(1)求圖中a的值;
(2)根據頻率分布直方圖,估計這100名學生期中考試數學成績的平均分;
(3)現用分層抽樣的方法從第3、4、5組中隨機抽取6名學生,將該樣本看成一個總體,從中隨機抽取2名,求其中恰有1人的分數不低于90分的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知圓C與y軸相切于點T(0,2),與x軸的正半軸交于兩點
(點
在點
的左側),且
.
(1)求圓C的方程;(2)過點
任作一直線與圓O:
相交于
兩點,連接
,求證:
定值.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對某校高三年級學生參加社區服務次數進行統計,隨機抽取M名學生作為樣本,得到這M名學生參加社區服務的次數,根據此數據作出了頻數與頻率的統計表和頻率分布直方圖.
分組 | 頻數 | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | m | p |
[25,30] | 2 | 0.05 |
合計 | M | 1 |
![]()
(1)求出表中M,p及圖中a的值;
(2)若該校高三學生有240人,試估計該校高三學生參加社區服務的次數在區間[10,15)內的人數;
(3)估計這次學生參加社區服務人數的眾數、中位數以及平均數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為AB,BC的中點,點F在側棱B1B上,且
,
.
![]()
求證:(1)直線DE
平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,曲線
由上半橢圓
:
(
,
)和部分拋物線
:
(
)連接而成,
與
的公共點為
,
,其中
的離心率為
.
![]()
(1)求
,
的值;
(2)過點
的直線
與
,
分別交于點
,
(均異于點
,
),是否存在直線
,使得以
為直徑的圓恰好過
點,若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在半徑為
的半圓形鐵皮上截取一塊矩形材料ABCD(點A、B在直徑上,點C、D在半圓周上),并將其卷成一個以AD為母線的圓柱體罐子的側面(不計剪裁和拼接損耗),
(1)若要求圓柱體罐子的側面積最大,應如何截取?
(2)若要求圓柱體罐子的體積最大,應如何截取?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com