【題目】“
”是“對(duì)任意的正數(shù)
,
”的( )
A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件
【答案】A
【解析】分析:根據(jù)基本不等式,我們可以判斷出“
”?“對(duì)任意的正數(shù)x,2x+
≥1”與“對(duì)任意的正數(shù)x,2x+
≥1”?“a=
”真假,進(jìn)而根據(jù)充要條件的定義,即可得到結(jié)論.
解答:解:當(dāng)“a=
”時(shí),由基本不等式可得:
“對(duì)任意的正數(shù)x,2x+
≥1”一定成立,
即“a=
”?“對(duì)任意的正數(shù)x,2x+
≥1”為真命題;
而“對(duì)任意的正數(shù)x,2x+
≥1的”時(shí),可得“a≥
”
即“對(duì)任意的正數(shù)x,2x+
≥1”?“a=
”為假命題;
故“a=
”是“對(duì)任意的正數(shù)x,2x+
≥1的”充分不必要條件
故選A
【題型】單選題
【結(jié)束】
9
【題目】如圖是一幾何體的平面展開(kāi)圖,其中
為正方形,
,
分別為
,
的中點(diǎn),在此幾何體中,給出下面四個(gè)結(jié)論:①直線
與直線
異面;②直線
與直線
異面;③直線
平面
;④平面
平面
.
其中一定正確的選項(xiàng)是( )
![]()
A. ①③ B. ②③ C. ②③④ D. ①③④
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正三棱柱ABC-A1B1C1的底面邊長(zhǎng)是2,側(cè)棱長(zhǎng)是
,D是AC的中點(diǎn)。
![]()
(1)求證:B1C∥平面A1BD;
(2)求二面角A1-BD-A的大。
(3)在線段AA1上是否存在一點(diǎn)E,使得平面B1C1E⊥平面A1BD,若存在,求出AE的長(zhǎng);若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中(
為坐標(biāo)原點(diǎn)),已知兩點(diǎn)
,
,且三角形
的內(nèi)切圓為圓
,從圓
外一點(diǎn)
向圓引切線
,
為切點(diǎn)。
(1)求圓
的標(biāo)準(zhǔn)方程.
(2)已知點(diǎn)
,且
,試判斷點(diǎn)
是否總在某一定直線
上,若是,求出直線
的方程;若不是,請(qǐng)說(shuō)明理由.
(3)已知點(diǎn)
在圓
上運(yùn)動(dòng),求
的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某奶茶公司對(duì)一名員工進(jìn)行測(cè)試以便確定其考評(píng)級(jí)別.公司準(zhǔn)備了兩種不同的奶茶共5 杯,其顏色完全相同,并且其中3杯為
奶茶,另外2杯為
奶茶,公司要求此員工一一品嘗后,從5杯奶茶中選出2杯奶茶.若該員工2杯都選
奶茶,則評(píng)為優(yōu)秀;若2 杯選對(duì)1杯
奶茶,則評(píng)為良好;否則評(píng)為及格.假設(shè)此人對(duì)
和
兩種奶茶沒(méi)有鑒別能力.
(Ⅰ)求此人被評(píng)為優(yōu)秀的概率;(Ⅱ)求此人被評(píng)為良好及以上的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),等腰直角三角形
的底邊
,點(diǎn)
在線段
上,
于
,現(xiàn)將
沿
折起到
的位置(如圖(2))
![]()
(1)求證:
;
(2)若
,直線
與平面
所成的角為
,求
長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列
的首項(xiàng)
,公差
.且
、
、
分別是等比數(shù)列
的第2、3、4項(xiàng).
(1)求數(shù)列
與
的通項(xiàng)公式;
(2)設(shè)數(shù)列
滿足
,求
的值(結(jié)果保留指數(shù)形式).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:
的右焦點(diǎn)為
,
為直線
上一點(diǎn),線段
交
于點(diǎn)
,若
,則
__________.
【答案】![]()
【解析】![]()
由條件橢圓
:
∴![]()
橢圓的右焦點(diǎn)為F,可知F(1,0),
設(shè)點(diǎn)A的坐標(biāo)為(2,m),則
=(1,m),
∴
,
∴點(diǎn)B的坐標(biāo)為
,
∵點(diǎn)B在橢圓C上,
∴
,解得:m=1,
∴點(diǎn)A的坐標(biāo)為(2,1),
.
答案為:
.
【題型】填空題
【結(jié)束】
16
【題目】四棱錐
中,
面
,
是平行四邊形,
,
,點(diǎn)
為棱
的中點(diǎn),點(diǎn)
在棱
上,且
,平面
與
交于點(diǎn)
,則異面直線
與
所成角的正切值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知![]()
(1)證明函數(shù)f ( x )的圖象關(guān)于
軸對(duì)稱(chēng);
(2)判斷
在
上的單調(diào)性,并用定義加以證明;
(3)當(dāng)x∈[1,2]時(shí)函數(shù)f (x )的最大值為
,求此時(shí)a的值。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com