已知sin
=
,A∈
.
(1)求cosA的值;
(2)求函數(shù)f(x)=cos2x+
sinAsinx的值域.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
的最大值為3,最小值為
.
(1)求
的值;
(2)當(dāng)求
時(shí),函數(shù)
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,某市政府決定在以政府大樓
為中心,正北方向和正東方向的馬路為邊界的扇形地域內(nèi)建造一個(gè)圖書(shū)館.為了充分利用這塊土地,并考慮與周邊環(huán)境協(xié)調(diào),設(shè)計(jì)要求該圖書(shū)館底面矩形的四個(gè)頂點(diǎn)都要在邊界上,圖書(shū)館的正面要朝市政府大樓.設(shè)扇形的半徑
,
,
與
之間的夾角為
.![]()
(1)將圖書(shū)館底面矩形
的面積
表示成
的函數(shù).
(2)求當(dāng)
為何值時(shí),矩形
的面積
有最大值?其最大值是多少?(用含R的式子表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)f(θ)=
sinθ+cosθ,其中,角θ的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與x軸非負(fù)半軸重合,終邊經(jīng)過(guò)點(diǎn)P(x,y),且0≤θ≤π.
(1)若點(diǎn)P的坐標(biāo)為(
,
),求f(θ)的值;
(2)若點(diǎn)P(x,y)為平面區(qū)域Ω:
上的一個(gè)動(dòng)點(diǎn),試確定角θ的取值范圍,并求函數(shù)f(θ)的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=2
·sin
cos
-sin(x+π).
(1)求f(x)的最小正周期;
(2)若將f(x)的圖象向右平移
個(gè)單位,得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間[0,π]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=sin2ωx+
sinωxsin
(ω>0)的最小正周期為
.
(1)寫(xiě)出函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間
上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=cos2(x-
)-sin2x.
(1)求f(
)的值.
(2)若對(duì)于任意的x∈[0,
],都有f(x)≤c,求實(shí)數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
函數(shù)f(x)=sin
sin
+
sinxcosx(x∈R).
(1)求f
的值;
(2)在△ABC中,若f
=1,求sinB+sinC的最大值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com