已知函數(shù)f(x)=
-2alnx(a>0)
(I)求函數(shù)f(x)的單調(diào)區(qū)間和最小值.
(II)若方程f(x)=2ax有唯一解,求實(shí)數(shù)a的值.
(I)函數(shù)
的減區(qū)間為
,增區(qū)間為
,最小值為![]()
(II)![]()
解析試題分析:解:⑴函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c7/5/1ej124.png" style="vertical-align:middle;" />,且
,
所以當(dāng)
時(shí),
,當(dāng)
時(shí),
,
即函數(shù)
的減區(qū)間為
,增區(qū)間為
,
.
⑵設(shè)
,
則
,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e5/7/zjoit1.png" style="vertical-align:middle;" />,令
,則
,
所以當(dāng)
時(shí)
,當(dāng)
時(shí)
,
即函數(shù)
的減區(qū)間為
,增區(qū)間為
,
又因?yàn)楫?dāng)
時(shí)均有
,
所以
有唯一解
,
注意到
,所以
所以
,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/02/4/1ddld4.png" style="vertical-align:middle;" />,所以
,
記
,則
對(duì)于
恒成立,
即
為增函數(shù),又
,所以
,
解之得
,為所求.
考點(diǎn):函數(shù)的零點(diǎn)與方程根的關(guān)系;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.
點(diǎn)評(píng):本小題主要考查函數(shù)的單調(diào)性、導(dǎo)數(shù)的應(yīng)用、解不等式等基礎(chǔ)知識(shí),以及推理能力、運(yùn)算能力和綜合應(yīng)用數(shù)學(xué)知識(shí)的能力,屬中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(1)計(jì)算
的值,據(jù)此提出一個(gè)猜想,并予以證明;
(2)證明:除點(diǎn)(2,2)外,函數(shù)
的圖像均在直線
的下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)當(dāng)
時(shí),求曲線
在原點(diǎn)處的切線方程;
(Ⅱ)當(dāng)
時(shí),討論函數(shù)
在區(qū)間
上的單調(diào)性;
(Ⅲ)證明不等式
對(duì)任意
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)請(qǐng)寫出函數(shù)
在每段區(qū)間上的解析式,并在圖中的直角坐標(biāo)系中作出函數(shù)
的圖象;
(II)若不等式
對(duì)任意的實(shí)數(shù)
恒成立,求實(shí)數(shù)
的取值范圍.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
是定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/36/e/13xpu3.png" style="vertical-align:middle;" />的奇函數(shù),且當(dāng)
時(shí),
,(
。
(1)求實(shí)數(shù)
的值;并求函數(shù)
在定義域
上的解析式;
(2)求證:函數(shù)![]()
上是增函數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知a>0,a≠1,設(shè)p:函數(shù)
內(nèi)單調(diào)遞減,q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點(diǎn).如果p與q有且只有一個(gè)正確,求a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
.
(1)若a=0時(shí),求函數(shù)
在點(diǎn)(1,
)處的切線方程;
(2)若函數(shù)
在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(3)令
是否存在實(shí)數(shù)a,當(dāng)
是自然對(duì)數(shù)的底)時(shí),函數(shù)
的最小值是3,若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
表示
導(dǎo)函數(shù)。
(1)求函數(shù)
的單調(diào)遞增區(qū)間;
(2)當(dāng)
為奇數(shù)時(shí),設(shè)
,數(shù)列
的前
項(xiàng)和為
,證明不等式
對(duì)一切正整數(shù)
均成立,并比較
與
的大小.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com