【題目】如圖,在正方形ABCD中,AB=2,點(diǎn)E、F分別在邊AB、DC上,M為AD的中點(diǎn),且
=0,則△MEF的面積的取值范圍為( ) ![]()
A.![]()
B.[1,2]
C.![]()
D.![]()
【答案】A
【解析】解:在正方形ABCD中,∵AB=2,點(diǎn)E、F分別在邊AB、DC上,M為AD的中點(diǎn),且
=0,∴ME⊥MF.
設(shè)∠FMD=θ,則∠EMA=90°﹣θ,
∵tanθ∈(0,2],且cot(90°﹣θ)=
∈(0,2],∴
≤tanθ≤2.
∵M(jìn)D=MA=1,∴△MEF的面積S=
MEMF=
=
=
=
+
,
令x=tanθ,△MEF的面積S(x)=
+
,x∈[
,2],
顯然S(x)在[
,1]上是減函數(shù),在[1,2]上是增函數(shù),S(1)=1,
由于當(dāng)x=
時(shí),S(x)=
+
=
;當(dāng) x=2時(shí),S(x)=
,
故S(x)=
+
在區(qū)間∈[
,2]上的最小值為1,最大值為
,即1≤S≤
,
故選:A.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點(diǎn)
且離心率為
的橢圓
的中心在原點(diǎn),焦點(diǎn)在
軸上.
(1)求橢圓
的方程;
(2)設(shè)點(diǎn)
是橢圓的左準(zhǔn)線與
軸的交點(diǎn),過點(diǎn)
的直線
與橢圓
相交于
兩點(diǎn),記橢圓
的左,右焦點(diǎn)分別為
,上下兩個(gè)頂點(diǎn)分別為
.當(dāng)線段
的中點(diǎn)落在四邊形
內(nèi)(包括邊界)時(shí),求直線
斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的公差d∈(0,1),且
=1,當(dāng)n=8時(shí),{an}的前n項(xiàng)和Sn取得最小值,則a1的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)
是平行四邊形
所在平面外一點(diǎn),
平面
,
,
,
.
![]()
(1)求證:平面
平面
;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正三角形
所在平面與梯形
所在平面垂直,
,
,
為棱
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)求證:
平面
;
(3)若直線
與平面
所成角的正切值為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強(qiáng)總理在本屆政府工作報(bào)告中向全國人民發(fā)出的口號(hào).某生產(chǎn)企業(yè)積極響應(yīng)號(hào)召,大力研發(fā)新產(chǎn)品.為了對新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù)
,如下表所示:
![]()
已知
.
(1)求出
的值;
(2)已知變量
,
具有線性相關(guān)關(guān)系,求產(chǎn)品銷量
(件)關(guān)于試銷單價(jià)
(元)的線性回歸方程
;
(3)用
表示用正確的線性回歸方程得到的與
對應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)
的殘差的絕對值
時(shí),則將銷售數(shù)據(jù)
稱為一個(gè)“好數(shù)據(jù)”.現(xiàn)從6個(gè)銷售數(shù)據(jù)中任取2個(gè),求抽取的2個(gè)銷售數(shù)據(jù)中至少有1個(gè)是“好數(shù)據(jù)”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(文科)已知函數(shù)
.
(1)若
,求曲線
在點(diǎn)
處的切線方程;
(2)若對任意
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甘肅省瓜州縣自古就以盛產(chǎn)“美瓜”而名揚(yáng)中外,生產(chǎn)的“瓜州蜜瓜”有4個(gè)系列30多個(gè)品種,質(zhì)脆汁多,香甜可口,清爽宜人,含糖量達(dá)14%-19%,是消暑止渴的佳品,有詩贊曰:冰泉浸綠玉,霸刀破黃金;涼冷消晚署,清甘洗渴心,調(diào)查表明,蜜瓜的甜度與海拔高度、日照時(shí)長、溫差有極強(qiáng)的相關(guān)性,分別用
表示蜜瓜甜度與海拔高度、日照時(shí)長、溫差的相關(guān)程度,并對它們進(jìn)行量化:0表示一般,1表示良,2表示優(yōu),再用綜合指標(biāo)
的值評(píng)定蜜瓜的等級(jí),若
,則為一級(jí);若
,則為二級(jí);若
,則為三級(jí).近年來,周邊各省也開始發(fā)展蜜瓜種植,為了了解目前蜜瓜在周邊各省的種植情況,研究人員從不同省份隨機(jī)抽取了10塊蜜瓜種植地,得到如下結(jié)果:
![]()
(1)若有蜜瓜種植地110塊,試估計(jì)等級(jí)為一級(jí)的蜜瓜種植地的數(shù)量;
(2)在所取樣本的二級(jí)和三級(jí)蜜瓜種植地中任取2塊,
表示取到三級(jí)蜜瓜種植地的數(shù)量,求隨機(jī)變量
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)在x=
取得最大值2,方程f(x)=0的兩個(gè)根為x1、x2 , 且|x1﹣x2|的最小值為π.
(1)求f(x);
(2)將函數(shù)y=f(x)圖象上各點(diǎn)的橫坐標(biāo)壓縮到原來的
,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的單調(diào)增區(qū)間和在(﹣
,
)上的值域.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com