【題目】設(shè)數(shù)列
的前
項(xiàng)和為
已知![]()
![]()
(I)設(shè)
,證明數(shù)列
是等比數(shù)列;
(II)求數(shù)列
的通項(xiàng)公式.![]()
【答案】(Ⅰ)見解析;(Ⅱ)![]()
【解析】此題主要考查了等比數(shù)列的性質(zhì)及其前n項(xiàng)和,運(yùn)用了錯(cuò)位相減法求數(shù)列{an}的前n項(xiàng)和,這個(gè)方法是高考中常用的方法,同學(xué)們要熟練掌握它
(Ⅰ)由題意只要證明bnbn-1
為一常數(shù)即可,已知Sn+1=4an+1,推出b1的值,然后繼續(xù)遞推相減,得an+1-2an=2(an-2an-1),從而求出bn與bn-1的關(guān)系;
(Ⅱ)根據(jù)(Ⅰ){bn}是等比數(shù)列,可得bn}的通項(xiàng)公式,從而證得數(shù)列{an
2n }是首項(xiàng)為1
2 ,公差為1 2 的等差數(shù)列,最后利用錯(cuò)位相減法,求出數(shù)列{an}的通項(xiàng)公式
解:(I)由
及
,有
![]()
![]()
由
,...① 則當(dāng)
時(shí),有
.....②
②-①得![]()
又
,![]()
是首項(xiàng)
,公比為2的等比數(shù)列.
(II)由(I)可得
,![]()
數(shù)列
是首項(xiàng)為
,公差為
的等差數(shù)列.
![]()
,![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某地參加2015 年夏令營的
名學(xué)生的身體健康情況,將學(xué)生編號為
,采用系統(tǒng)抽樣的方法抽取一個(gè)容量為
的樣本,且抽到的最小號碼為
,已知這
名學(xué)生分住在三個(gè)營區(qū),從
到
在第一營區(qū),從
到
在第二營區(qū),從
到
在第三營區(qū),則第一、第二、第三營區(qū)被抽中的人數(shù)分別為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過點(diǎn)A(﹣2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點(diǎn).
(1)求圓C的方程;
(2)若![]()
=﹣2,求實(shí)數(shù)k的值;
(3)過點(diǎn)(0,4)作動直線m交圓C于E,F(xiàn)兩點(diǎn).試問:在以EF為直徑的所有圓中,是否存在這樣的圓P,使得圓P經(jīng)過點(diǎn)M(2,0)?若存在,求出圓P的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在銳角△ABC中,兩向量p=(2-2sin A,cos A+sin A),q=(sin A-cos A,1+sin A),且p與q是共線向量.
(1)求A的大小;
(2)求函數(shù)y=2sin2B+cos(
)取最大值時(shí),角B的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若有窮數(shù)列
(
是正整數(shù)),滿足
即
(
是正整數(shù),且
),就稱該數(shù)列為“對稱數(shù)列”。例如,數(shù)列
與數(shù)列
都是“對稱數(shù)列”.
(1)已知數(shù)列
是項(xiàng)數(shù)為9的對稱數(shù)列,且
,
,
,
,
成等差數(shù)列,
,
,試求
,
,
,
,并求前9項(xiàng)和
.
(2)若
是項(xiàng)數(shù)為
的對稱數(shù)列,且
構(gòu)成首項(xiàng)為31,公差為
的等差數(shù)列,數(shù)列
前
項(xiàng)和為
,則當(dāng)
為何值時(shí),
取到最大值?最大值為多少?
(3)設(shè)
是
項(xiàng)的“對稱數(shù)列”,其中
是首項(xiàng)為1,公比為2的等比數(shù)列.求
前
項(xiàng)的和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在坐標(biāo)原點(diǎn)
的橢圓
經(jīng)過點(diǎn)
,且點(diǎn)
為其右焦點(diǎn).
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在平行于
的直線
,使得直線
與橢圓
有公共點(diǎn),且直線
與
的距離等于4?若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐
的底面
是平行四邊形,
,
,
,
面
,設(shè)
為
中點(diǎn),點(diǎn)
在線段
上,且
.
![]()
(1)求證:
平面
;
(2)設(shè)異面直線
與
的夾角為
,若
,求
的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生身高情況,某校以10%的比例對全校700名學(xué)生按性別進(jìn)行分層抽樣調(diào)查,測得身高情況的統(tǒng)計(jì)圖如下:
![]()
(1)估計(jì)該校男生的人數(shù);
(2)估計(jì)該校學(xué)生身高在170~185cm之間的概率;
(3)從樣本中身高在180~190cm之間的男生中任選2人,求至少有1人身高在185~190cm之間的概率。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com