【題目】已知中心在坐標原點
的橢圓
經過點
,且點
為其右焦點.
(Ⅰ)求橢圓
的標準方程;
(Ⅱ)是否存在平行于
的直線
,使得直線
與橢圓
有公共點,且直線
與
的距離等于4?若存在,求出直線
的方程;若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】已知橢圓
:![]()
的一個焦點與拋物線
的焦點重合,點
在
上
(Ⅰ)求
的方程;
(Ⅱ)直線
不過原點O且不平行于坐標軸,
與
有兩個交點
,線段
的中點為
,證明:
的斜率與直線
的斜率的乘積為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某動物園要建造兩間完全相同的矩形熊貓居室,其總面積為24平方米,設熊貓居室的一面墻
長為
米(2
).
![]()
⑴用
表示墻
的長;
⑵假設所建熊貓居室的墻壁造價(在墻壁高度一定的前提下)為每米1000元,請將墻壁的總造價
(元)表示為
(米)的函數;
⑶當
為何值時,墻壁的總造價最低?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機抽取
個作為樣本,稱出它們的重量(單位:克),重量分組區間為
,
,
,
,由此得到樣本的重量頻率分布直方圖(如圖).
![]()
(Ⅰ)求
的值,并根據樣本數據,試估計盒子中小球重量的眾數與平均值;
(Ⅱ)從盒子中隨機抽取
個小球,其中重量在
內的小球個數為
,求
的分布列和數學期望. (以直方圖中的頻率作為概率).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為方便市民休閑觀光,市政府計劃在半徑為200米,圓心角為
的扇形廣場內(如圖所示),沿
邊界修建觀光道路,其中
分別在線段
上,且
兩點間距離為定長
米.
![]()
(1)當
時,求觀光道
段的長度;
(2)為提高觀光效果,應盡量增加觀光道路總長度,試確定圖中
兩點的位置,使觀光道路總長度達到最長?并求出總長度的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com