如圖,點(diǎn)P(0,-1)是橢圓C1:
=1(a>b>0)的一個(gè)頂點(diǎn),C1的長(zhǎng)軸是圓C2:x2+y2=4的直徑.l1,l2是過(guò)點(diǎn)P且互相垂直的兩條直線,其中l1交圓C2于A,B兩點(diǎn),l2交橢圓C1于另一點(diǎn)D.![]()
(1)求橢圓C1的方程;
(2)求△ABD面積取最大值時(shí)直線l1的方程.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
橢圓
的離心率為
,且經(jīng)過(guò)點(diǎn)
過(guò)坐標(biāo)原點(diǎn)的直線
與
均不在坐標(biāo)軸上,
與橢圓M交于A、C兩點(diǎn),直線
與橢圓M交于B、D兩點(diǎn)
(1)求橢圓M的方程;
(2)若平行四邊形ABCD為菱形,求菱形ABCD的面積的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,F(xiàn)是橢圓的右焦點(diǎn),以點(diǎn)F為圓心的圓過(guò)原點(diǎn)O和橢圓的右頂點(diǎn),設(shè)P是橢圓上的動(dòng)點(diǎn),P到橢圓兩焦點(diǎn)的距離之和等于4.![]()
(1)求橢圓和圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l的方程為x=4,PM⊥l,垂足為M,是否存在點(diǎn)P,使得△FPM為等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的焦點(diǎn)分別為
和
,長(zhǎng)軸長(zhǎng)為6,設(shè)直線
交橢圓C于A、B兩點(diǎn),求線段AB的中點(diǎn)坐標(biāo)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓
,直線
與圓
相切,且交橢圓
于
兩點(diǎn),c是橢圓的半焦距,
(1)求m的值;
(2)O為坐標(biāo)原點(diǎn),若
,求橢圓
的方程;
(3)在(2)的條件下,設(shè)橢圓
的左右頂點(diǎn)分別為A,B,動(dòng)點(diǎn)
,直線
與直線
分別交于M,N兩點(diǎn),求線段MN的長(zhǎng)度的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,設(shè)橢圓
:![]()
的離心率
,頂點(diǎn)
的距離為
,
為坐標(biāo)原點(diǎn).![]()
(1)求橢圓
的方程;
(2)過(guò)點(diǎn)
作兩條互相垂直的射線,與橢圓
分別交于
兩點(diǎn).
(ⅰ)試判斷點(diǎn)
到直線
的距離是否為定值.若是請(qǐng)求出這個(gè)定值,若不是請(qǐng)說(shuō)明理由;
(ⅱ)求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓
=1(a>b>0)的上,下兩個(gè)頂點(diǎn)為A,B,直線l:y=-2,點(diǎn)P是橢圓上異于點(diǎn)A,B的任意一點(diǎn),連接AP并延長(zhǎng)交直線l于點(diǎn)N,連接PB并延長(zhǎng)交直線l于點(diǎn)M,設(shè)AP所在的直線的斜率為k1,BP所在的直線的斜率為k2.若橢圓的離心率為
,且過(guò)點(diǎn)A(0,1).![]()
(1)求k1·k2的值;
(2)求MN的最小值;
(3)隨著點(diǎn)P的變化,以MN為直徑的圓是否恒過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出該定點(diǎn);如不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的中心為平面直角坐標(biāo)系xOy的原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1.
(1)求橢圓C的方程;
(2)若P為橢圓C上的動(dòng)點(diǎn),M為過(guò)P且垂直于x軸的直線上的一點(diǎn),
=λ,求點(diǎn)M的軌跡方程,并說(shuō)明軌跡是什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知平面五邊形
關(guān)于直線
對(duì)稱(chēng)(如圖(1)),
,
,將此圖形沿
折疊成直二面角,連接
、
得到幾何體(如圖(2))![]()
(1)證明:
平面
;
(2)求平面
與平面
的所成角的正切值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com