【題目】已知a>0,若不等式|x﹣4|+|x﹣3|<a在實數(shù)集R上的解集不是空集,則a的取值范圍是 .
【答案】(1,+∞)
【解析】解:法一:∵|x﹣4|+|x﹣3|≥|x﹣4+3﹣x|=1,
∴|x﹣4|+|x﹣3|的最小值為1,
又不等式|x﹣4|+|x﹣3|≤a的解集不是空集,
∴a>1.
法二:由絕對值的幾何意義知|x﹣4|+|x﹣3|表示實數(shù)軸上的點到﹣3和到4兩點的距離之和,
故|x﹣4|+|x﹣3|≥1,
由題意,不等式|x﹣4|+|x13|<a在實數(shù)集上的解不為空集,
只要a>(|x﹣4|+|x13|)min即可,
即a>1,
所以答案是:(1,+∞)
【考點精析】本題主要考查了絕對值不等式的解法的相關知識點,需要掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關鍵是去掉絕對值的符號才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)的定義域為R,若f(x+1)與f(x﹣1)都是奇函數(shù),則f(5)=( )
A.﹣1
B.0
C.1
D.5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設全集U=R,A={x|x>0},B={x|x>1},則A∩UB=( )
A.{x|0≤x<1}
B.{x|0<x≤1}
C.{x|x<0}
D.{|x>1}
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|x2+2x﹣8≥0},B={x|1<x<5},U=R,則CU(A∪B)( )
A.(﹣4,1]
B.[﹣4,1)
C.(﹣2,1]
D.[﹣2,1)
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com