【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,PA⊥底面ABCD,AD=AP,E為棱PD中點(diǎn).
(1)求證:PD⊥平面ABE;
(2)若F為AB中點(diǎn),
,試確定λ的值,使二面角P﹣FM﹣B的余弦值為-
. ![]()
【答案】
(1)解:證明:∵PA⊥底面ABCD,AB底面ABCD,∴PA⊥AB,
又∵底面ABCD為矩形,∴AB⊥AD,PA∩AD=A,PA平面PAD,AD平面PAD,
∴AB⊥平面PAD,又PD平面PAD,∴AB⊥PD,AD=AP,E為PD中點(diǎn),∴AE⊥PD,AE∩AB=A,AE平面ABE,AB平面ABE,∴PD⊥平面ABE.
(2)解:以A為原點(diǎn),以
為x,y,z軸正方向,建立空間直角坐標(biāo)系A(chǔ)﹣BDP,令|AB|=2,
![]()
則A(0,0,0),B(2,0,0),P(0,0,2),C(2,2,0),E(0,1,1),F(xiàn)(1,0,0),
,
,
,M(2λ,2λ,2﹣2λ)
設(shè)平面PFM的法向量
,
,即
, ![]()
設(shè)平面BFM的法向量
,
,
即
,
,解得 ![]()
【解析】(I)證明AB⊥平面PAD,推出AB⊥PD,AE⊥PD,AE∩AB=A,即可證明PD⊥平面ABE.(II) 以A為原點(diǎn),以
為x,y,z軸正方向,建立空間直角坐標(biāo)系A(chǔ)﹣BDP,求出相關(guān)點(diǎn)的坐標(biāo),平面PFM的法向量,平面BFM的法向量,利用空間向量的數(shù)量積求解即可.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
,求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)
在
上是減函數(shù),求
的最小值;
(3)證明:當(dāng)
時(shí),
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(
)討論函數(shù)
在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù).
(
)若函數(shù)
在
處取得極值,且對(duì)
,
恒成立,求實(shí)數(shù)
的取值范圍.
(
)當(dāng)
且
時(shí),試比較
與
的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
圖像上有一最低點(diǎn)
,若圖像上各點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)縮為原來的
倍,再向左平移
個(gè)單位得
,又
的所有根從小到大依次相差
個(gè)單位,則
的解析式為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
:
(
)的焦點(diǎn)為
,拋物線上存在一點(diǎn)
到焦點(diǎn)的距離為3,且點(diǎn)
在圓
:
上.
(Ⅰ)求拋物線
的方程;
(Ⅱ)已知橢圓
:
(
)的一個(gè)焦點(diǎn)與拋物線
的焦點(diǎn)重合,且離心率為
.直線
:
交橢圓
于
,
兩個(gè)不同的點(diǎn),若原點(diǎn)
在以線段
為直徑的圓的外部,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(文科學(xué)生做)已知數(shù)列
滿足
.
(1)求
,
,
的值,猜想并證明
的單調(diào)性;
(2)請(qǐng)用反證法證明數(shù)列
中任意三項(xiàng)都不能構(gòu)成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某街道居委會(huì)擬在
地段的居民樓正南方向的空白地段
上建一個(gè)活動(dòng)中心,其中
米.活動(dòng)中心東西走向,與居民樓平行. 從東向西看活動(dòng)中心的截面圖的下部分是長(zhǎng)方形
,上部分是以
為直徑的半圓. 為了保證居民樓住戶的采光要求,活動(dòng)中心在與半圓相切的太陽光線照射下落在居民樓上的影長(zhǎng)
不超過
米,其中該太陽光線與水平線的夾角
滿足
.
![]()
(1)若設(shè)計(jì)
米,
米,問能否保證上述采光要求?
(2)在保證上述采光要求的前提下,如何設(shè)計(jì)
與
的長(zhǎng)度,可使得活動(dòng)中心的截面面積最大?(注:計(jì)算中
取3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三名音樂愛好者參加某電視臺(tái)舉辦的演唱技能海選活動(dòng),在本次海選中有合格和不合格兩個(gè)等級(jí).若海選合格記1分,海選不合格記0分.假設(shè)甲、乙、丙海選合格的概率分別為
,他們海選合格與不合格是相互獨(dú)立的.
(1)求在這次海選中,這三名音樂愛好者至少有一名海選合格的概率;
(2)記在這次海選中,甲、乙、丙三名音樂愛好者所得分之和為隨機(jī)變量
,求隨機(jī)變量
的分布列和數(shù)學(xué)期望
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com