【題目】一種設(shè)備的單價(jià)為
元,設(shè)備維修和消耗費(fèi)用第一年為
元,以后每年增加
元(
是常數(shù)).用
表示設(shè)備使用的年數(shù),記設(shè)備年平均費(fèi)用為
,即
(設(shè)備單價(jià)
設(shè)備維修和消耗費(fèi)用)
設(shè)備使用的年數(shù).
(Ⅰ)求
關(guān)于
的函數(shù)關(guān)系式;
(Ⅱ)當(dāng)
,
時(shí),求這種設(shè)備的最佳更新年限.
【答案】(Ⅰ)
;(Ⅱ)15年
【解析】試題分析:
(Ⅰ)由題意可知設(shè)備維修和消耗費(fèi)用構(gòu)成以
為首項(xiàng),
為公差的等差數(shù)列,結(jié)合等差數(shù)列前n項(xiàng)和公式可得![]()
(Ⅱ)由題意結(jié)合均值不等式的結(jié)論有
,則
,當(dāng)且僅當(dāng)
時(shí),年平均消耗費(fèi)用取得最小值,即設(shè)備的最佳更新年限是15年.
試題解析:
(Ⅰ)由題意,設(shè)備維修和消耗費(fèi)用構(gòu)成以
為首項(xiàng),
為公差的等差數(shù)列,
因此
年維修消耗費(fèi)用為![]()
于是![]()
(Ⅱ)∵
,所以![]()
,
, ![]()
當(dāng)且僅當(dāng)
,即
,
時(shí),年平均消耗費(fèi)用取得最小值
所以設(shè)備的最佳更新年限是15年
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于
的不等式
恰好有4個(gè)整數(shù)解,則實(shí)數(shù)
的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資
類產(chǎn)品的收益與投資額成正比,投資
類產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時(shí)
兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元.
(1)分別寫出
兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系;
(2)該家庭有20萬元資金,全部用于理財(cái)投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知遞增等比數(shù)列{an},滿足a1=1,且a2a4﹣2a3a5+a4a6=36.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3an+
,求數(shù)列{an2bn}的前n項(xiàng)和Sn;
(3)在(2)的條件下,令cn=
,{cn}的前n項(xiàng)和為Tn , 若Tn>λ恒成立,求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于
的不等式
恰好有4個(gè)整數(shù)解,則實(shí)數(shù)
的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè){an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和.已知S3=7,且a1+3,3a2 , a3+4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)令bn=lna3n+1 , n=1,2,…,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖:在四棱錐
中,底面
為菱形,且
,
底面
,
,
,
是
上點(diǎn),且
平面
.
![]()
(1)求證:
;(2)求三棱錐
的體積.
【答案】(1)見解析;(2)
.
【解析】試題分析:(1)根據(jù)菱形性質(zhì)得對(duì)角線相互垂直,根據(jù)
底面
得
,再根據(jù)線面垂直判定定理得
面
即可得結(jié)果(2)記
與
的交點(diǎn)為
,則BD 為高,三角形POE為底,根據(jù)錐體體積公式求體積
試題解析:(1)
面
![]()
(2)記
與
的交點(diǎn)為
,連接![]()
平面
![]()
在
中:
,
,
, ![]()
在
中:
,
,則
,即
,
則
![]()
【題型】解答題
【結(jié)束】
21
【題目】已知橢圓
:
的離心率
,且其的短軸長(zhǎng)等于
.
![]()
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)如圖,記圓
:
,過定點(diǎn)
作相互垂直的直線
和
,直線
(斜率
)與圓
和橢圓
分別交于
、
兩點(diǎn),直線
與圓
和橢圓
分別交于
、
兩點(diǎn),若
與
面積之比等于
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,短軸長(zhǎng)為
.
(1)求橢圓
的方程;
(2)設(shè)
,
是橢圓
上關(guān)于
軸對(duì)稱的任意兩個(gè)不同的點(diǎn),連接
交橢圓
于另一點(diǎn)
,證明直線
與
軸相交于定點(diǎn)
;
(3)在(2)的條件下,過點(diǎn)
的直線與橢圓
交于
,
兩點(diǎn),求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com