設(shè)函數(shù)
的圖象如圖所示,且與
軸相切于原點(diǎn),若函數(shù)的極小值為-4.![]()
(1)求
的值;
(2)求函數(shù)
的遞減區(qū)間.
(1)![]()
(2)單調(diào)遞減區(qū)間
解析試題分析:(1)解:(1)由題意知f(0)=0,∴c=0,∴f(x)=x3+ax2+bx f'(x)=3x2+2ax+b,又∵f'(x)=b=0,∴f'(x)=3x2+2ax=0,故極小值點(diǎn)為x=-![]()
,∴f(-
)=-4∴a=-3,(2)令f'(x)<0 即:3x2-6x<0,解得:0<x<2
∴函數(shù)的遞減區(qū)間為(0,2)
考點(diǎn):導(dǎo)數(shù)的幾何意義及利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間
點(diǎn)評:本題考查了導(dǎo)數(shù)的幾何意義及利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,要注意從圖象中得到有價值的結(jié)論,屬于基礎(chǔ)題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
有兩個極值點(diǎn)
,且
.
(1)求實(shí)數(shù)
的取值范圍;
(2)討論函數(shù)
的單調(diào)性;
(3)若對任意的
,都有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對于在區(qū)間
上有意義的兩個函數(shù)
和
,如果對于任意的
,都有
,則稱
與
在區(qū)間
上是接近的兩個函數(shù),否則稱它們在
上是非接近的兩個函數(shù)。現(xiàn)有兩個函數(shù)
,
,且
與
在
都有意義.
(1)求
的取值范圍;
(2)討論
與
在區(qū)間
上是否是接近的兩個函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
是奇函數(shù),
是偶函數(shù)。(1)求
的值;(2)設(shè)
若
對任意
恒成立,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)設(shè)
時,求函數(shù)
極大值和極小值;
(2)
時討論函數(shù)
的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù)
是定義在
上的偶函數(shù),已知當(dāng)
時,
.
(1)求函數(shù)
的解析式;
(2)求函數(shù)
的單調(diào)遞增區(qū)間;
(3)求
在區(qū)間
上的值域。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com