【題目】已知拋物線y2=2px(p>0)的焦點(diǎn)為F,拋物線上的兩個(gè)動(dòng)點(diǎn)A,B始終滿足∠AFB=60°,過弦AB的中點(diǎn)H作拋物線的準(zhǔn)線的垂線HN,垂足為N,則
的取值范圍為
A.(0,
]B.[
,+∞)
C.[1,+∞)D.(0,1]
【答案】D
【解析】
過A,B分別作拋物線準(zhǔn)線的垂線AQ,BP,垂足分別為Q,P.設(shè)|AF|=a,|BF|=b,根據(jù)拋物線的定義得到|HN|=
,在
中,由余弦定理得
,于是得到
的表達(dá)式,然后根據(jù)基本不等式可得所求的范圍.
過A,B分別作拋物線準(zhǔn)線的垂線AQ,BP,垂足分別為Q,P.
設(shè)|AF|=a,|BF|=b,
則由拋物線的定義得|AQ|=a,|BP|=b,
所以|HN|=
.
在
中,由余弦定理得|AB|2=a2+b2-2abcos 60°=a2+b2-ab,
所以
,
因?yàn)?/span>a+b≥2
,
所以
,當(dāng)且僅當(dāng)a=b時(shí)等號(hào)成立,
故
的取值范圍為(0,1].
故選D.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若
表示從左到右依次排列的9盞燈,現(xiàn)制定開燈與關(guān)燈的規(guī)則如下:
(1)對(duì)一盞燈進(jìn)行開燈或關(guān)燈一次叫做一次操作;
(2)燈
在任何情況下都可以進(jìn)行一次操作;對(duì)任意的
,要求燈
的左邊有且只有燈
是開燈狀態(tài)時(shí)才可以對(duì)燈
進(jìn)行一次操作.如果所有燈都處于開燈狀態(tài),那么要把燈
關(guān)閉最少需要_____次操作;如果除燈
外,其余8盞燈都處于開燈狀態(tài),那么要使所有燈都開著最少需要_____次操作.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左焦點(diǎn)
,直線
與y軸交于點(diǎn)P.且與橢圓交于A,B兩點(diǎn).A為橢圓的右頂點(diǎn),B在x軸上的射影恰為
。
(1)求橢圓E的方程;
(2)M為橢圓E在第一象限部分上一點(diǎn),直線MP與橢圓交于另一點(diǎn)N,若
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校在學(xué)校內(nèi)招募了
名男志愿者和
名女志愿者,將這
名志愿者的身高編成如莖葉圖所示(單位:
),若身高在
以上(包括
)定義為“高個(gè)子”,身高在
以下(不包括
)定義為“非高個(gè)子”。
![]()
(Ⅰ)根據(jù)數(shù)據(jù)分別寫出男、女兩組身高的中位數(shù);
(Ⅱ)如果用分層抽樣的方法從“高個(gè)子”和“非高個(gè)子”中抽取5人,則各抽幾人?
(Ⅲ)在(Ⅱ)的基礎(chǔ)上,從這
人中選
人,那么至少有一人是“高個(gè)子”的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知單調(diào)遞增的等比數(shù)列
滿足
,且
是
的等差中項(xiàng).
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)若
,對(duì)任意正數(shù)數(shù)
,
恒成立,試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,
中,
,
,
分別為
,
邊的中點(diǎn),以
為折痕把
折起,使點(diǎn)
到達(dá)點(diǎn)
的位置,且
.
![]()
(1)證明:
平面
;
(2)求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將邊長為
的正方形
沿對(duì)角線
折起,使得平面
平面
,在折起后形成的三棱錐
中,給出下列四個(gè)命題:①
;②異面直線
與
所成的角為
;③二面角
余弦值為
;④三棱錐
的體積是
.其中正確命題的序號(hào)是___________.(寫出所有正確命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 下列結(jié)論錯(cuò)誤的是
A. 命題:“若
,則
”的逆否命題是“若
,則
”
B. “
”是“
”的充分不必要條件
C. 命題:“
,
”的否定是“
,
”
D. 若“
”為假命題,則
均為假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù),
),以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程是
.
(1)求直線
的普通方程和曲線
的直角坐標(biāo)方程;
(2)已知直線
與曲線
交于
兩點(diǎn),且
,求實(shí)數(shù)
的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com