如圖,在四棱錐
中,底面
為矩形,
平面
,
,
為
中點(diǎn).![]()
(1)證明:
//平面
;
(2)證明:
平面
.
(1)參考解析;(2)參考解析
解析試題分析:(1)直線與平面平行的證明,根據(jù)判斷定理要在平面內(nèi)找一條直線與與該直線平行.所以要證
//平面
,找到直線
即可.
(2)要證直線與平面垂直根據(jù)判斷定理要在平面內(nèi)找到兩條相交的直線與該直線垂直即可.通過分析直線AE⊥PD由題意可得;另外直線CD垂直平面PAD,所以有可得直線CD垂直直線AE.又由于直線CD與直線PD相交,所以可證得結(jié)論.
試題解析:證明:(1)因?yàn)榈酌?img src="http://thumb.zyjl.cn/pic5/tikupic/42/2/1lpvs4.png" style="vertical-align:middle;" />為矩形,
所以
.又因?yàn)?
平面
,
平面
,
所以
//平面
.
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0a/f/tqo6p1.png" style="vertical-align:middle;" />,
為
中點(diǎn),![]()
所以
,因?yàn)?
平面
,
所以![]()
![]()
.又底面
為矩形,
所以
.
所以
平面
.
所以![]()
.
所以
平面
.
考點(diǎn):1.線面平行的判斷.2.線面垂直的判斷.3.線面關(guān)系與線線關(guān)系的相互轉(zhuǎn)化.4.空間圖像感.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在正方體ABCD-A1B1C1D1中,對角線A1C與平面BDC1交于點(diǎn)O,AC、BD交于點(diǎn)M,E為AB的中點(diǎn),F(xiàn)為AA1的中點(diǎn).求證:
(1)C1、O、M三點(diǎn)共線;
(2)E、C、D1、F四點(diǎn)共面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱柱ABCA1B1C1中,底面△ABC是等邊三角形,D為AB中點(diǎn).
(1)求證:BC1∥平面A1CD;
(2)若四邊形BCC1B1是矩形,且CD⊥DA1,求證:三棱柱ABCA1B1C1是正三棱柱.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)如圖所示,證明命題“a是平面π內(nèi)的一條直線,b是π外的一條直線(b不垂直于π),c是直線b在π上的投影,若a⊥b,則a⊥c”為真.![]()
![]()
(2)寫出上述命題的逆命題,并判斷其真假(不需證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖四棱錐
中,底面
是平行四邊形,
平面![]()
是
的中點(diǎn),
.![]()
(1)試判斷直線
與平面
的位置關(guān)系,并予以證明;
(2)若四棱錐
體積為
,
,求證:平面
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com