【題目】已知函數(shù)
,且
.
(Ⅰ)當(dāng)
時(shí),求曲線
在點(diǎn)
處的切線方程;
(Ⅱ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)
有最值,寫出
的取值范圍.(只需寫出結(jié)論)
【答案】(1)
;(2)詳見解析;(3) ![]()
【解析】試題分析:(Ⅰ)求導(dǎo),利用導(dǎo)數(shù)的幾何意義進(jìn)行求解;(Ⅱ)求導(dǎo),利用分類討論思想討論導(dǎo)函數(shù)的符號變換,進(jìn)而得到函數(shù)的單調(diào)區(qū)間;(Ⅲ)根據(jù)前一問直接給出答案即可.
試題解析:(Ⅰ)當(dāng)
時(shí),由題設(shè)知
.
因?yàn)?/span>
,
所以
,
.
所以
在
處的切線方程為
.
(Ⅱ)因?yàn)?/span>
,所以
.
當(dāng)
時(shí),定義域?yàn)?/span>
.
且
故
的單調(diào)遞減區(qū)間為
……5分
當(dāng)
時(shí),定義域?yàn)?/span>
. 當(dāng)
變化時(shí),
,
:
x |
|
|
|
|
|
| — | 0 | + | 0 | — |
| 單調(diào)減 | 極小值 | 單調(diào)增 | 極大值 | 單調(diào)減 |
故
的單調(diào)遞減區(qū)間為
,
,
單調(diào)遞增區(qū)間為
.
綜上所述,
當(dāng)
時(shí),
的單調(diào)遞減區(qū)間為
;
當(dāng)
時(shí),故
的單調(diào)遞減區(qū)間為
,
,
單調(diào)遞增區(qū)間為
.
(Ⅲ)
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,AD⊥AB,AD=1,BC=2,AB=3,P是AB上的一個(gè)動點(diǎn),∠CPB=α,∠DPA=β. (Ⅰ)當(dāng)
最小時(shí),求tan∠DPC的值;
(Ⅱ)當(dāng)∠DPC=β時(shí),求
的值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
,試判斷函數(shù)
的零點(diǎn)個(gè)數(shù);
(2)若函數(shù)
在
上為增函數(shù),求整數(shù)
的最大值,(可能要用的數(shù)據(jù):
;
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2+2x﹣4y+1=0,O為坐標(biāo)原點(diǎn),動點(diǎn)P在圓C外,過P作圓C的切線,設(shè)切點(diǎn)為M.
(1)若點(diǎn)P運(yùn)動到(1,3)處,求此時(shí)切線l的方程;
(2)求滿足條件|PM|=|PO|的點(diǎn)P的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)證明f(x)在(0,+∞)上單調(diào)遞增;
(2)是否存在實(shí)數(shù)a使得f(x)的定義域、值域都是
,若存在求出a的值,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)是定義在(0,+∞)上單調(diào)函數(shù),且對x∈(0,+∞),都有f(f(x)﹣lnx)=e+1,則方程f(x)﹣f′(x)=e的實(shí)數(shù)解所在的區(qū)間是( )
A.(0,
)
B.(
,1)
C.(1,e)
D.(e,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正四棱錐
中,已知異面直線
與
所成的角為
,給出下面三個(gè)命題:
:若
,則此四棱錐的側(cè)面積為
;
:若
分別為
的中點(diǎn),則
平面
;
:若
都在球
的表面上,則球
的表面積是四邊形
面積的
倍.
在下列命題中,為真命題的是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
的展開式的系數(shù)和比(3x﹣1)n的展開式的系數(shù)和大992,求(2x﹣
)2n的展開式中:
(1)二項(xiàng)式系數(shù)最大的項(xiàng);
(2)系數(shù)的絕對值最大的項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正四棱錐
中,已知異面直線
與
所成的角為
,給出下面三個(gè)命題:
:若
,則此四棱錐的側(cè)面積為
;
:若
分別為
的中點(diǎn),則
平面
;
:若
都在球
的表面上,則球
的表面積是四邊形
面積的
倍.
在下列命題中,為真命題的是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com