【題目】已知?jiǎng)訄A
過(guò)定點(diǎn)
,并且內(nèi)切于定圓
.
(1)求動(dòng)圓圓心
的軌跡方程;
(2)若
上存在兩個(gè)點(diǎn)
,
,(1)中曲線上有兩個(gè)點(diǎn)
,
,并且
,
,
三點(diǎn)共線,
,
,
三點(diǎn)共線,
,求四邊形
的面積的最小值.
【答案】(1)
(2)24
【解析】
(1)根據(jù)幾何關(guān)系得到
,得到軌跡為橢圓,代入數(shù)據(jù)計(jì)算得到答案.
(2)直線
斜率不存在時(shí),直接計(jì)算面積為
;當(dāng)斜率存在時(shí),設(shè)
,聯(lián)立方程,根據(jù)韋達(dá)定理得到
,再利用均值不等式得到答案.
(1)設(shè)動(dòng)圓的半徑為
,則
,
,所以
,
由橢圓的定義知?jiǎng)訄A圓心
的軌跡是以
,
為焦點(diǎn)的橢圓
,
,所以
,動(dòng)圓圓心
的軌跡方程是
.
(2)當(dāng)直線
斜率不存在時(shí),直線
的斜率為0,易得
,
,四邊形
的面積
.
當(dāng)直線
斜率存在時(shí),設(shè)其方程為![]()
聯(lián)立方程得
,消元得![]()
設(shè)
,
,則![]()
.
∵
,∴直線
的方程為![]()
,得![]()
設(shè)
,
,則![]()
![]()
四邊形
的面積
,
令
,
,上式![]()
令
,
![]()
,∴
,∴![]()
綜上所述:最小值為24.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某地區(qū)2012年至2018年生活垃圾無(wú)害化處理量(單位:萬(wàn)噸)的折線圖.
![]()
注:年份代碼
分別表示對(duì)應(yīng)年份
.
(1)由折線圖看出,可用線性回歸模型擬合
與
的關(guān)系,請(qǐng)用相關(guān)系數(shù)
(
線性相關(guān)較強(qiáng))加以說(shuō)明;
(2)建立
與
的回歸方程(系數(shù)精確到0.01),預(yù)測(cè)2019年該區(qū)生活垃圾無(wú)害化處理量.
(參考數(shù)據(jù))
,
,
,
,
,
,
.
(參考公式)相關(guān)系數(shù)
,在回歸方程
中斜率和截距的最小二乘估計(jì)公式分別為:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)求曲線
在點(diǎn)
處的切線方程;
(2)求
的單調(diào)區(qū)間;
(3)若對(duì)于任意
,都有
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,
平面
,
,且
,
,
.
![]()
(1)求證:
;
(2)在線段
上,是否存在一點(diǎn)
,使得二面角
的大小為45°,如果存在,求
與平面
所成角的正弦值,如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝廠生產(chǎn)一種服裝,每件服裝成本為40元,出廠單價(jià)定為60元,該廠為鼓勵(lì)銷(xiāo)售商訂購(gòu),規(guī)定當(dāng)一次訂購(gòu)量超過(guò)100件時(shí),每多訂購(gòu)一件,訂購(gòu)的全部服裝的出廠單價(jià)就降低
元,根據(jù)市場(chǎng)調(diào)查,銷(xiāo)售商一次訂購(gòu)不會(huì)超過(guò)600件.
(1)設(shè)一次訂購(gòu)
件,服裝的實(shí)際出廠單價(jià)為
元,寫(xiě)出函數(shù)
的表達(dá)式;
(2)當(dāng)銷(xiāo)售商一次訂購(gòu)多少件服裝時(shí),該廠獲得的利潤(rùn)最大?其最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)調(diào)查,3個(gè)成年人中就有一個(gè)高血壓,那么什么是高血壓?血壓多少是正常的?經(jīng)國(guó)際衛(wèi)生組織對(duì)大量不同年齡的人群進(jìn)行血壓調(diào)查,得出隨年齡變化,收縮壓的正常值變化情況如下表:
年齡x | 28 | 32 | 38 | 42 | 48 | 52 | 58 | 62 |
收縮壓 | 114 | 118 | 122 | 127 | 129 | 135 | 140 | 147 |
其中:
,
,![]()
![]()
請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;
請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程
;
的值精確到![]()
若規(guī)定,一個(gè)人的收縮壓為標(biāo)準(zhǔn)值的
倍,則為血壓正常人群;收縮壓為標(biāo)準(zhǔn)值的
倍,則為輕度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的
倍,則為中度高血壓人群;收縮壓為標(biāo)準(zhǔn)值的
倍及以上,則為高度高血壓人群
一位收縮壓為180mmHg的70歲的老人,屬于哪類(lèi)人群?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐
中,
底面
,
,
,
,
,
,
為
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分10分)選修4—4,坐標(biāo)系與參數(shù)方程
已知曲線
,直線
:
(
為參數(shù)).
(I)寫(xiě)出曲線
的參數(shù)方程,直線
的普通方程;
(II)過(guò)曲線
上任意一點(diǎn)
作與
夾角為
的直線,交
于點(diǎn)
,
的最大值與最小值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com