【題目】已知兩定點(diǎn)
,
,點(diǎn)P是平面內(nèi)的動(dòng)點(diǎn),且
,記動(dòng)點(diǎn)P的軌跡是W.
(1)求動(dòng)點(diǎn)P的軌跡W的方程;
(2)圓
與x軸交于C,D兩點(diǎn),過(guò)圓上一動(dòng)點(diǎn)K(異于C,D點(diǎn))作兩條直線(xiàn)KC,KD分別交軌跡W于G,H,M,N四點(diǎn).設(shè)四邊形GMHN面積為S,求
的取值范圍.
【答案】(1)
(2)![]()
【解析】
(1)設(shè)
,
,則易知:
,
,則
,
,由此可得
,知
點(diǎn)軌跡是橢圓,從而可得標(biāo)準(zhǔn)方程;
(2)由
即
,過(guò)點(diǎn)
且平行于
的直線(xiàn)交橢圓為
、
兩點(diǎn),由橢圓的對(duì)稱(chēng)知:
,因此求出
即可得
,設(shè)
的方程為:
,由橢圓中的弦長(zhǎng)公式(韋達(dá)定理求解)得
,同理有
,
,設(shè)
,把
用
表示后求出取值范圍,然后再得
的范圍.
解:(1)設(shè)
,
,則易知:
,
,
則
,
,
由
知:
,
則P的軌跡是以
,
為焦點(diǎn)且長(zhǎng)軸長(zhǎng)為4的橢圓,
,
則P的軌跡W的方程為:
;
(2)由
即
,
,
的斜率存在且不為零,兩直線(xiàn)分別過(guò)
,
,設(shè)
,
的斜率分別為k、
,則:
.
設(shè)過(guò)點(diǎn)
且平行于
的直線(xiàn)交橢圓為
、
兩點(diǎn),
的斜率
,
由橢圓的對(duì)稱(chēng)知:
,
設(shè)
的方程為:
,由
得:
,
易知
恒成立,設(shè)
,
,則
,
,
故
,
同理得:
,
則
,
令
,則
,
故
,則
的取值范圍為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,射線(xiàn)OA、OB分別與x軸正半軸成45°和30°角,過(guò)點(diǎn)P(1,0)作直線(xiàn)AB分別交OA、OB于A、B兩點(diǎn),當(dāng)AB的中點(diǎn)C恰好落在直線(xiàn)y=
x上時(shí),求直線(xiàn)AB的方程.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)
,
,若直線(xiàn)
上至少存在三個(gè)點(diǎn)
,使得
是直角三角形,則實(shí)數(shù)
的取值范圍是( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】回收1噸廢紙可以生產(chǎn)出0.8噸再生紙,可能節(jié)約用水約100噸,節(jié)約用煤約1.2噸,回收1噸廢鉛蓄電池可再生鉛約0.6噸,可節(jié)約用煤約0.8噸,節(jié)約用水約120噸,回收每噸廢鉛蓄電池的費(fèi)用約0.9萬(wàn)元,回收1噸廢紙的費(fèi)用約為0.2萬(wàn)元.現(xiàn)用于回收廢紙和廢鉛蓄電池的費(fèi)用不超過(guò)18萬(wàn)元,在保證節(jié)約用煤不少于12噸的前提下,最多可節(jié)約用水約__________噸.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生平均每天體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)
平均每天鍛煉的時(shí)間/分鐘 |
|
|
|
|
|
|
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學(xué)生日均體育鍛煉時(shí)間在
的學(xué)生評(píng)價(jià)為“鍛煉達(dá)標(biāo)”.
(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的
列聯(lián)表;
鍛煉不達(dá)標(biāo) | 鍛煉達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 20 | 110 | |
合計(jì) |
并通過(guò)計(jì)算判斷,是否能在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān)?
(2)在“鍛煉達(dá)標(biāo)”的學(xué)生中,按男女用分層抽樣方法抽出10人,進(jìn)行體育鍛煉體會(huì)交流,
(i)求這10人中,男生、女生各有多少人?
(ii)從參加體會(huì)交流的10人中,隨機(jī)選出2人作重點(diǎn)發(fā)言,記這2人中女生的人數(shù)為
,求
的分布列和數(shù)學(xué)期望.
參考公式:
,其中
.
臨界值表
| 0.10 | 0.05 | 0.025 | 0.010 |
| 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)f(x),若a,b,c∈R,f(a),f(b),f(c)為某一三角形的三邊長(zhǎng),則稱(chēng)f(x)為“可構(gòu)造三角形函數(shù)”.已知函數(shù)f(x)=
是“可構(gòu)造三角形函數(shù)”,則實(shí)數(shù)t的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),討論函數(shù)
的單調(diào)性;
(2)當(dāng)
時(shí),恒有
,求實(shí)數(shù)
的取值范圍.
附:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給圖中A,B,C,D,E,F六個(gè)區(qū)域進(jìn)行染色,每個(gè)區(qū)域只染一種顏色,且相鄰的區(qū)域不同色.若有4種顏色可供選擇,則共有___種不同的染色方案.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線(xiàn)過(guò)點(diǎn)(3,-2)且與橢圓4x2+9y2=36有相同的焦點(diǎn).
(1)求雙曲線(xiàn)的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)M在雙曲線(xiàn)上,F(xiàn)1,F(xiàn)2為左、右焦點(diǎn),且|MF1|+|MF2|=6
,試判別△MF1F2的形狀.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com