【題目】在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且滿(mǎn)足
=
,
(1)求角C的大小;
(2)設(shè)函數(shù)f(x)=2sinxcosxcosC+2sin2xsinC﹣
,求函數(shù)f(x)在區(qū)間[0,
]上的值域.
【答案】
(1)解:∵
,
∴(2a﹣b)cosC=ccosB,
∴2sinAcosC=sinBcosC+cosBsinC
∴2sinAcosC=sin(B+C)=sinA,
∵∠A是△ABC的內(nèi)角,
∴sinA≠0,
∴2cosC=1,
∴∠C= ![]()
(2)解:由(1)可知∠C=
,
∴f(x)=
sin2x﹣
(1﹣2sin2x)=
sin2x﹣
cos2x=sin(2x﹣
),
由x∈[0,
],
∴﹣
≤2x﹣
,
∴﹣
≤sin(2x﹣
)≤1,
∴函數(shù)f(x)的值域?yàn)閇﹣
,1]
【解析】(1)利用三角函數(shù)恒等變換的應(yīng)用,正弦定理化簡(jiǎn)已知可得2sinAcosC=sinA,結(jié)合sinA≠0,可求2cosC=1,從而可求∠C的值.(2)利用三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)可得f(x)=sin(2x﹣
),由x∈[0,
],可求﹣
≤2x﹣
,利用正弦函數(shù)的性質(zhì)即可求得f(x)在區(qū)間[0,
]上的值域.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解正弦定理的定義(正弦定理:
).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校自主招生一次面試成績(jī)的莖葉圖和頻率分布直方圖均受到了不同程度的損壞,其可見(jiàn)部分信息如下,據(jù)此解答下列問(wèn)題:
![]()
(1)求參加此次高校自主招生面試的總?cè)藬?shù)
,面試成績(jī)的中位數(shù)及分?jǐn)?shù)在
內(nèi)的人數(shù);
(2)若從面試成績(jī)?cè)?/span>
內(nèi)的學(xué)生中任選兩人進(jìn)行隨機(jī)復(fù)查,求恰好有一人分?jǐn)?shù)在
內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,底面ABCD是棱長(zhǎng)為2的正方形,側(cè)面PAD為正三角形,且面PAD⊥面ABCD,E、F分別為棱AB、PC的中點(diǎn).
![]()
(1)求證:EF∥平面PAD.
(2)求三棱錐B-EFC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓
的左焦點(diǎn)為
,離心率為
,橢圓與
軸與左焦點(diǎn)與點(diǎn)
的距離為
.
(1)求橢圓方程;
(2)過(guò)點(diǎn)
的直線(xiàn)
與橢圓交于不同的兩點(diǎn)
,當(dāng)
面積為
時(shí),求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)f(x)和g(x)滿(mǎn)足f(x)=
e2x﹣2+x2﹣2f(0)x,且g′(x)+2g(x)<0,則下列不等式成立的是( )
A.f(2)g(2015)<g(2017)
B.f(2)g(2015)>g(2017)
C.g(2015)>f(2)g(2017)
D.g(2015)>f(2)g(2017)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:
(
)的左、右焦點(diǎn)分別為
,
,其離心率為
,短軸端點(diǎn)與焦點(diǎn)構(gòu)成四邊形的面積為
.
(1)求橢圓
的方程;
(2)若過(guò)點(diǎn)
的直線(xiàn)
與橢圓
交于不同的兩點(diǎn)
、
,
為坐標(biāo)原點(diǎn),當(dāng)
時(shí),試求直線(xiàn)
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=x2﹣aln(x+2),g(x)=xex , 且f(x)存在兩個(gè)極值點(diǎn)x1、x2 , 其中x1<x2 .
(1)求實(shí)數(shù)a的取值范圍;
(2)求g(x1﹣x2)的最小值;
(3)證明不等式:f(x1)+x2>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
+
=1的焦點(diǎn)分別是
、
,
是橢圓上一點(diǎn),若連結(jié)
、
、
三點(diǎn)恰好能構(gòu)成直角三角形,則點(diǎn)
到
軸的距離是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐A﹣BCD中,AB、AC、AD兩兩垂直且長(zhǎng)度均為10,定長(zhǎng)為
的線(xiàn)段MN的一個(gè)端點(diǎn)M在棱AB上運(yùn)動(dòng),另一個(gè)端點(diǎn)N在△ACD內(nèi)運(yùn)動(dòng)(含邊界),線(xiàn)段MN的中點(diǎn)P的軌跡的面積為2π,則m的值等于 .
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com