【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AB∥CD,AD=CD=1,∠BAD=120°,PA=
,∠ACB=90°,M是線段PD上的一點(diǎn)(不包括端點(diǎn)). (Ⅰ)求證:BC⊥平面PAC;
(Ⅱ)求二面角D﹣PC﹣A的正切值;
(Ⅲ)試確定點(diǎn)M的位置,使直線MA與平面PCD所成角θ的正弦值為
.![]()
【答案】解:(Ⅰ)∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC, ∵∠ACB=90°,
∴BC⊥AC,又PA∩AC=A,
∴BC⊥平面PAC.
(Ⅱ)取CD的中點(diǎn)E,則AE⊥CD,
∴AE⊥AB,又PA⊥底面ABCD,∴PA⊥AE,
建立如圖所示空間直角坐標(biāo)系,
則A(0,,0,0),P(0,0,
),C(
,
,0),D(
,﹣
,0)![]()
∴
=(0,0,
),
=(
,0),
,
,
設(shè)平面PAC的一個法向量
,則
,
∴
,∴
.
設(shè)平面PDC的一個法向量
,則
,
,
∴
,∴
,
設(shè)二面角D﹣PC﹣A的平面角為θ,
∴cosθ=|cos<
>|=|
|=|
|=
,
故二面角D﹣PC﹣A的正切值為2.
(Ⅲ)設(shè)M(x,y,z),
,
則(x,y,z﹣
)=m(
),
解得點(diǎn)M(
),即
=(
),
由sinθ=
,得m=1(不合題意舍去)或m=
,
所以當(dāng)M為PD的中點(diǎn)時,直線AM與平面PCD所成角的正弦值為
.
【解析】(Ⅰ)由PA⊥底面ABCD,BC平面AC,知PA⊥BC,由∠ACB=90°,知BC⊥AC,由此能夠證明BC⊥平面PAC.(Ⅱ)取CD的中點(diǎn)E,則AE⊥CD,故AE⊥AB,由PA⊥底面ABCD,知PA⊥AE,建立空間直角坐標(biāo)系,利用向量法能求出二面角D﹣PC﹣A的正切值.(Ⅲ)設(shè)M(x,y,z),
,則(x,y,z﹣
)=m(
),解得點(diǎn)M(
),由此能夠推導(dǎo)出當(dāng)M為PD的中點(diǎn)時,直線AM與平面PCD所成角的正弦值為
.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面垂直的判定的相關(guān)知識,掌握一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想,以及對空間角的異面直線所成的角的理解,了解已知
為兩異面直線,A,C與B,D分別是
上的任意兩點(diǎn),
所成的角為
,則
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有垣厚五尺,兩鼠對穿.大鼠日一尺,小鼠亦日一尺.大鼠日自倍,小鼠日自半.問幾何日相逢?各穿幾何?”,翻譯成今天的話是:一只大鼠和一只小鼠分別從的墻兩側(cè)面對面打洞,已知第一天兩鼠都打了一尺長的洞,以后大鼠每天打的洞長是前一天的2倍,小鼠每天打的洞長是前一天的一半,已知墻厚五尺,問兩鼠幾天后相見?相見時各打了幾尺長的洞?設(shè)兩鼠x 天后相遇(假設(shè)兩鼠每天的速度是勻速的),則x=( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
+
=1(a>b>0),離心率為
,焦點(diǎn)F1(0,﹣c),F(xiàn)2(0,c)過F1的直線交橢圓于M,N兩點(diǎn),且△F2MN的周長為4. (I) 求橢圓方程;
(II) 與y軸不重合的直線l與y軸交于點(diǎn)P(0,m)(m≠0),與橢圓C交于相異兩點(diǎn)A,B且
=λ
.若
+λ
=4
,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0 , 則稱點(diǎn)(x0 , f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點(diǎn)”;任何一個三次函數(shù)都有對稱中心,且“拐點(diǎn)”就是對稱中心.請你根據(jù)這一發(fā)現(xiàn),求:函數(shù)
對稱中心為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列{an}中,Sn是前n項和,且S3=S8 , S7=Sk , 則k的值為( )
A.4
B.11
C.2
D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有四個函數(shù):①y=xsinx;②y=xcosx;③y=x|cosx|;④y=x2x的圖象(部分)如圖: ![]()
則按照從左到右圖象對應(yīng)的函數(shù)序號安排正確的一組是( )
A.①④③②
B.③④②①
C.④①②③
D.①④②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2ex+blnx,且在P(1,f(1))處的切線方程為(3e﹣1)x﹣y+1﹣2e=0,g(x)=(
﹣1)ln(x﹣2)+
+1.
(1)求a,b的值;
(2)證明:f(x)的最小值與g(x)的最大值相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)x∈[﹣2,1]時,不等式ax3﹣x2+4x+3≥0恒成立,則實(shí)數(shù)a的取值范圍是( )
A.[﹣5,﹣3]
B.[﹣6,﹣
]
C.[﹣6,﹣2]
D.[﹣4,﹣3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集為[﹣3,3].
(Ⅰ)解不等式:f(x)+f(x+2)>0;
(Ⅱ)若a,b,c均為正實(shí)數(shù),且滿足a+b+c=m,求證:
≥3.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com