【題目】在
中,
所對(duì)的邊分別為
,且
.
(1)求角
的大小;
(2)若
,
,
為
的中點(diǎn),求
的長(zhǎng).
【答案】(1)
;(2)
.
【解析】試題分析:(1)由已知,利用正弦定理可得
a2=
b2+
c2-2b,再利用余弦定理即可得出cosA,結(jié)合A的范圍即可得解A的值.
(2)△ABC中,先由正弦定理求得AC的值,再由余弦定理求得AB的值,△ABD中,由余弦定理求得BD的值.
試題解析:
(1)因?yàn)?/span>
asin A=(
b-c)sin B+(
c-b)·sin C,
由正弦定理得
a2=(
b-c)b+(
c-b)c,
整理得
a2=
b2+
c2-2bc,
由余弦定理得cos A=
=
=
,
因?yàn)?/span>A∈(0,π),所以A=
.
(2)由cos B=
,得sin B=
=
=
,
所以cos C=cos[π-(A+B)]=-cos(A+B)=-
=-
,
由正弦定理得b=
=
=2,
所以CD=
AC=1,
在△BCD中,由余弦定理得BD2=(
)2+12-2×1×
×
=13,
所以BD=
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和是Sn , 若點(diǎn)An(n,
)在函數(shù)f(x)=﹣x+c的圖象上運(yùn)動(dòng),其中c是與x無(wú)關(guān)的常數(shù),且a1=3(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=a
,求數(shù)列{bn}的前n項(xiàng)和Tn的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某投資人欲將5百萬(wàn)元獎(jiǎng)金投入甲、乙兩種理財(cái)產(chǎn)品,根據(jù)銀行預(yù)測(cè),甲、乙兩種理財(cái)產(chǎn)品的收益與投入獎(jiǎng)金
的關(guān)系式分別為
,其中
為常數(shù)且
.設(shè)對(duì)乙種產(chǎn)品投入獎(jiǎng)金
百萬(wàn)元,其中
.
(1)當(dāng)
時(shí),如何進(jìn)行投資才能使得總收益
最大;(總收益
)
(2)銀行為了吸儲(chǔ),考慮到投資人的收益,無(wú)論投資人獎(jiǎng)金如何分配,要使得總收益不低于
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】公差不為0的等差數(shù)列
中,已知
且
,其前
項(xiàng)和
的最大值為( )
A. 25 B. 26 C. 27 D. 28
【答案】B
【解析】設(shè)等差數(shù)列
的公差為
,
∵
,
∴
,
整理得
,
∵
,
∴
.
∴
,
∴當(dāng)
時(shí),
.
故
最大,且
.選B.
點(diǎn)睛:求等差數(shù)列前n項(xiàng)和最值的常用方法:
①利用等差數(shù)列的單調(diào)性, 求出其正負(fù)轉(zhuǎn)折項(xiàng),便可求得和的最值;
②將等差數(shù)列的前n項(xiàng)和
(A、B為常數(shù))看作關(guān)于n的二次函數(shù),根據(jù)二次函數(shù)的性質(zhì)求最值.
【題型】單選題
【結(jié)束】
9
【題目】如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫出的是某多面體的三視圖,則該多面體的表面積為( )
![]()
A.
B.
C. 90 D. 81
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某網(wǎng)店統(tǒng)計(jì)了連續(xù)三天售出商品的種類情況:第一天售出19種商品,第二天售出13種商品,第三天售出18種商品;前兩天都售出的商品有3種,后兩天都售出的商品有4種,則該網(wǎng)店
①第一天售出但第二天未售出的商品有______種;
②這三天售出的商品最少有_______種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
滿足
,若函數(shù)
與
圖象的交點(diǎn)為
,則交點(diǎn)的所有橫坐標(biāo)和縱坐標(biāo)之和為( )
A. 0 B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn). ![]()
(1)證明PA∥平面BDE;
(2)證明:DE⊥面PBC;
(3)求直線AB與平面PBC所成角的大小.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com