【題目】如圖所示四棱錐P-ABCD平面
,E為線段BD上的一點,且EB=ED=EC=BC,連接CE并延長交AD于F
(1)若G為PD的中點,求證:平面
平面CGF;
(2)若BC=2,PA=3,求平面BCP與平面DCP所成銳二面角的余弦值.
![]()
科目:高中數學 來源: 題型:
【題目】已知橢圓
的離心率為
,過橢圓的焦點且與長軸垂直的弦長為1.
(1)求橢圓C的方程;
(2)設點M為橢圓上第一象限內一動點,A,B分別為橢圓的左頂點和下頂點,直線MB與x軸交于點C,直線MA與y軸交于點D,求證:四邊形ABCD的面積為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學校藝術節對
四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學對這四件參賽作品預測如下:
甲說:“是
或
作品獲得一等獎”; 乙說:“
作品獲得一等獎”;
丙說:“
兩件作品未獲得一等獎”; 丁說:“是
作品獲得一等獎”.
評獎揭曉后,發現這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是_________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,設P、M、N分別是正方體的棱
,AD,AB上非頂點的任意點.
![]()
①
的外心必在
的某一邊上;
②
的外心必在
的內部;
③
的垂心必是點A在平面PMN上的射影;
④若線段AP、AM、AN的長分別為a、b、c,則
.其中( ).
A. 只有①、④正確.
B. 只有③、④正確.
C. 只有②、③、④正確.
D. 只有②、③正確.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下表提供了某廠節能降耗技術改造后生產甲產品過程中記錄的產量
(噸)與相應的生產能耗
(噸)標準煤的幾組對照數據:
![]()
(1)請根據上表提供的數據,用最小二乘法求出
關于
的線性回歸方程
;
(2)已知該廠技改前,100噸甲產品的生產能耗為90噸標準煤.試根據(1)求出的線性回歸方程,預測生產100噸甲產品的生產能耗比技改前降低多少噸標準煤?
,參考數值:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班主任對全班50名學生進行了作業量多少的調查,喜歡玩電腦游戲的同學認為作業多的有18人,認為作業不多的有9人,不喜歡玩電腦游戲的同學認為作業多的有8人,認為作業不多的有15人,則認為喜歡玩電腦游戲與認為作業量的多少有關系的把握大約是多少?
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】微信是騰訊公司推出的一種手機通訊軟件,它支持發送語音短信、視頻、圖片和文字,一經推出便風靡全國,甚至涌現出一批在微信的朋友圈內銷售商品的人(被稱為微商).為子調查每天微信用戶使用微信的時間,某經銷化妝品的微商在一廣場隨機采訪男性、女性用戶各50名,將男性、女性使用微信的時間分成5組:
,
,
,
,
分別加以統計,得到如圖所示的頻率分布直方圖.
![]()
(1)根據女性頻率分布直方圖估計女性使用微信的平均時間;
(2)若每天再微信超過4個小時的用戶列為“微信控”,否則稱其為“非微信控”,請你根據已知條件完成
的列聯表,并判斷是否有90%的把握認為“微信控”與“性別有關”?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某單位為促進職工業務技能提升,對該單位120名職工進行一次業務技能測試,測試項目共5項.現從中隨機抽取了10名職工的測試結果,將它們編號后得到它們的統計結果如下表(表1)所示(“√”表示測試合格,“×”表示測試不合格).
表1:
編號\測試項目 | 1 | 2 | 3 | 4 | 5 |
1 | × | √ | √ | √ | √ |
2 | √ | √ | √ | √ | × |
3 | √ | √ | √ | √ | × |
4 | √ | √ | √ | × | × |
5 | √ | √ | √ | √ | √ |
6 | √ | × | × | √ | × |
7 | × | √ | √ | √ | × |
8 | √ | × | × | × | × |
9 | √ | √ | × | × | × |
10 | √ | √ | √ | √ | × |
規定:每項測試合格得5分,不合格得0分.
(1)以抽取的這10名職工合格項的項數的頻率代替每名職工合格項的項數的概率.
①設抽取的這10名職工中,每名職工測試合格的項數為
,根據上面的測試結果統計表,列出
的分布列,并估計這120名職工的平均得分;
②假設各名職工的各項測試結果相互獨立,某科室有5名職工,求這5名職工中至少有4人得分不少于20分的概率;
(2)已知在測試中,測試難度的計算公式為
,其中
為第
項測試難度,
為第
項合格的人數,
為參加測試的總人數.已知抽取的這10名職工每項測試合格人數及相應的實測難度如下表(表2):
表2:
測試項目 | 1 | 2 | 3 | 4 | 5 |
實測合格人數 | 8 | 8 | 7 | 7 | 2 |
定義統計量
,其中
為第
項的實測難度,
為第
項的預測難度(
).規定:若
,則稱該次測試的難度預測合理,否則為不合理,測試前,預估了每個預測項目的難度,如下表(表3)所示:
表3:
測試項目 | 1 | 2 | 3 | 4 | 5 |
預測前預估難度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
判斷本次測試的難度預估是否合理.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com