【題目】已知平面五邊形
是軸對稱圖形(如圖1),BC為對稱軸,AD⊥CD,AD=AB=1,
,將此五邊形沿BC折疊,使平面ABCD⊥平面BCEF,得到如圖2所示的空間圖形,對此空間圖形解答下列問題.
![]()
![]()
(1)證明:AF∥平面DEC;
(2)求二面角
的余弦值.
【答案】(1)詳見解析,(2)![]()
【解析】
試題分析:(1)作
交
于點(diǎn)
,連接
.由已知條件得
.所以
面
.同理:
面
.由此能證明
平面AFB. (2)過G作GH⊥AD于點(diǎn)H,連接HE.由(1)知EG⊥BC,又平面ABCD⊥平面BCEF,平面ABCD∩平面BCEF=BC,所以EG⊥平面ABCD,所以EG⊥AD.可得AD⊥平面EHG,則AD⊥HE,則∠EHG即為二面角
的平面角. 在
中,即可求出二面角
的余弦值.
試題解析:
(1)如圖,過D作DG⊥BC于點(diǎn)G,連接GE,
因?yàn)?/span>BC為對稱軸,所以AB⊥BC,則有AB∥DG,又AB平面ABF,
所以DG∥平面ABF,同理EG∥平面ABF.又DG∩EG=G,所以平面DGE∥平面ABF.
又平面AFED∩平面ABF=AF,平面AFED∩平面DGE=DE,所以AF∥DE,
又DE平面DEC,所以AF∥平面DEC.
![]()
(2)如圖,過G作GH⊥AD于點(diǎn)H,連接HE.由(1)知EG⊥BC,又平面ABCD⊥平面BCEF,平面ABCD∩平面BCEF=BC,所以EG⊥平面ABCD,所以EG⊥AD.
又EG∩HG=G,所以AD⊥平面EHG,則AD⊥HE,
則∠EHG即為二面角
的平面角.
由AD⊥CD,AD=AB=1,
,得G為BC的中點(diǎn),
,
,
.
因?yàn)?/span>
為直角三角形,所以
,
則二面角
的余弦值為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校為測評班級學(xué)生對任課教師的滿意度,采用“100分制”打分的方式來計(jì)分,規(guī)定滿意度不低于98分,則評價(jià)該教師為“優(yōu)秀”,現(xiàn)從某班學(xué)生中隨機(jī)抽取10名,以下莖葉圖記錄了他們對某教師的滿意度分?jǐn)?shù)(以十位數(shù)字為莖,個(gè)位數(shù)字為葉);
![]()
(1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)求從這10人中隨機(jī)選取3人,至多有1人評價(jià)該教師是“優(yōu)秀”的概率;
(3)以這10人的樣本數(shù)據(jù)來估計(jì)整個(gè)班級的總體數(shù)據(jù),若從該班任選3人,記
表示抽到評價(jià)該教師為“優(yōu)秀”的人數(shù),求
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于
的方程為
.
(Ⅰ)若
,
,求方程有實(shí)數(shù)根的概率.
(Ⅱ)若
,
,求方程有實(shí)數(shù)根的概率.
(Ⅲ)在區(qū)間
上任取兩個(gè)數(shù)
和
,利用隨機(jī)數(shù)模擬的方法近似計(jì)算關(guān)于
的方程
有實(shí)數(shù)根的概率,請寫出你的試驗(yàn)方法.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)學(xué)生參加數(shù)學(xué)競賽培訓(xùn),在培訓(xùn)期間他們參加5項(xiàng)預(yù)賽,成績?nèi)缦拢?/span>
甲:78 76 74 90 82
乙:90 70 75 85 80
(Ⅰ)用莖葉圖表示這兩組數(shù)據(jù);
(Ⅱ)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從平均數(shù)、方差的角度考慮,你認(rèn)為選派哪位學(xué)生參加合適?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別過橢圓
左、右焦點(diǎn)
的動直線
相交于
點(diǎn),與橢圓
分別交于
與
不同四點(diǎn),直線
的斜率
滿足
, 已知
與
軸重合時(shí),
.
![]()
(1)求橢圓
的方程;
(2)是否存在定點(diǎn)
使得
為定值,若存在,求出
點(diǎn)坐標(biāo)并求出此定值,若不存在,
說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】統(tǒng)計(jì)表明,某種型號的汽車在勻速行駛中每小時(shí)的耗油量
(升)關(guān)于行駛速度
(千米/小時(shí))的函數(shù)解析式可以表示為:
.已知甲、乙兩地相距100千米.
(Ⅰ)當(dāng)汽車以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?
(II)當(dāng)汽車以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體
中,平面
與平面
垂直,
是正方形,在直角梯形
中,
,
,且
,
為線段
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)求證:
平面
;
(3)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于某設(shè)備的使用年限
與所支出的維修費(fèi)用
(萬元),有如下統(tǒng)計(jì)資料:
設(shè)
對
呈線性相關(guān)關(guān)系,試求:
![]()
(1)線性回歸方程
的回歸系數(shù)
;
(2)估計(jì)使用年限為10年時(shí),維修費(fèi)用是多少?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com