【題目】如圖,在四棱錐
中,底面
是平行四邊形,
,側面
底面
,
,
,
,
分別為
,
的中點,點
在線段
上.
![]()
(1)求證:
平面
;
(2)若直線
與平面
所成的角和直線
與平面
所成的角相等,求
的值.
【答案】(1)證明見解析;(2)
.
【解析】試題分析:
(Ⅰ)在平行四邊形
中,由條件可得
,進而可得
。由側面
底面
,得
底面
,故得
,所以可證得
平面
.(Ⅱ)先證明平面
平面
,由面面平行的性質可得
平面
.(Ⅲ)建立空間直角坐標系,通過求出平面的法向量,根據線面角的向量公式可得
。
試題解析:
(Ⅰ)證明:在平行四邊形
中,
∵
,
,
,
∴
,
∴
,
∵
,
分別為
,
的中點,
∴
,
∴
,
∵側面
底面
,且
,
∴
底面
,
又
底面
,
∴
,
又
,
平面
,
平面
,
∴
平面
.
(Ⅱ)證明:∵
為
的中點,
為
的中點,
∴
,
又
平面
,
平面
,
∴
平面
,
同理
平面
,
又
,
平面
,
平面
,
∴平面
平面
,
又
平面
,
∴
平面
.
(Ⅲ)解:由
底面
,
,可得
,
,
兩兩垂直,
建立如圖空間直角坐標系
,
![]()
則
,
,
,
,
,
,
所以
,
,
,
設
,則
,
∴
,
,
易得平面
的法向量
,
設平面
的法向量為
,則:
由
,得
,
令
,得
,
∵直線
與平面
所成的角和此直線與平面
所成的角相等,
∴
,即
,
∴
,
解得
或
(舍去),
故
.
點睛:用向量法確定空間中點的位置的方法
根據題意建立適當的空間直角坐標系,由條件確定有關點的坐標,運用共線向量用參數(參數的范圍要事先確定)確定出未知點的坐標,根據向量的運算得到平面的法向量或直線的方向向量,根據所給的線面角(或二面角)的大小進行運算,進而求得參數的值,通過與事先確定的參數的范圍進行比較,來判斷參數的值是否符合題意,進而得出點是否存在的結論。
【題型】解答題
【結束】
21
【題目】如圖,橢圓
上的點到左焦點的距離最大值是
,已知點
在橢圓上,其中
為橢圓的離心率.
![]()
(1)求橢圓的方程;
(2)過原點且斜率為
的直線交橢圓于
、
兩點,其中
在第一象限,它在
軸上的射影為點
,直線
交橢圓于另一點
.證明:對任意的
,點
恒在以線段
為直徑的圓內.
科目:高中數學 來源: 題型:
【題目】給出如下結論:
①函數
是奇函數;
②存在實數
,使得
;
③若
是第一象限角且
,則
;
④
是函數
的一條對稱軸方程;
⑤函數
的圖形關于點
成中心對稱圖形.
其中正確的結論的序號是__________.(填序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
:
的右焦點為
,
為直線
上一點,線段
交
于點
,若
,則
__________.
【答案】![]()
【解析】![]()
由條件橢圓
:
∴![]()
橢圓的右焦點為F,可知F(1,0),
設點A的坐標為(2,m),則
=(1,m),
∴
,
∴點B的坐標為
,
∵點B在橢圓C上,
∴
,解得:m=1,
∴點A的坐標為(2,1),
.
答案為:
.
【題型】填空題
【結束】
16
【題目】四棱錐
中,
面
,
是平行四邊形,
,
,點
為棱
的中點,點
在棱
上,且
,平面
與
交于點
,則異面直線
與
所成角的正切值為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:
(
>b>0)的左、右頂點分別為A1、A2,上、下頂點分別為B2、B1,O為坐標原點,四邊形A1B1A2B2的面積為4,且該四邊形內切圓的方程為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若M、N是橢圓C上的兩個不同的動點,直線OM、ON的斜率之積等于
,試探求△OMN的面積是否為定值,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】遼寧號航母紀念章從2012年10月5日起開始上市,通過市場調查,得到該紀念章每
枚的市場價
(單位:元)與上市時間
(單位:天)的數據如下:
上市時間 |
|
|
|
市場價 |
|
|
|
(1)根據上表數據,從下列函數中選取一個恰當的函數描述遼寧號航母紀念章的市場價
與上市時間
的變化關系:①
;②
;③
;
(2)利用你選取的函數,求遼寧號航母紀念章市場價最低時的上市天數及最低的價格;
(3)設你選取的函數為
,若對任意實數
,關于
的方程
恒有個想異實數根,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com