已知函數(shù)
.
(1)求曲線
在點
處的切線方程;
(2)直線
為曲線
的切線,且經(jīng)過原點,求直線
的方程及切點坐標(biāo).
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)當(dāng)
時,求證:函數(shù)
在
上單調(diào)遞增;
(Ⅱ)若函數(shù)
有三個零點,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
.
(1)已知函數(shù)h(x)=g(x)+ax3的一個極值點為1,求a的取值;
(2) 求函數(shù)
在
上的最小值;
(3)對一切
,
恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
為實數(shù),![]()
(1)求導(dǎo)數(shù)
;
(2)若
,求
在[-2,2] 上的最大值和最小值;
(3)若
在
和
上都是遞增的,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(Ⅰ)當(dāng)
時,求
的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)
在點![]()
處的切線為
,直線
與
軸相交于點
.若點
的縱坐標(biāo)恒小于1,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ln(1+x)-
.
(1)求f(x)的極小值; (2)若a、b>0,求證:lna-lnb≥1-
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)設(shè)函數(shù)![]()
,且
為
的極值點.
(Ⅰ) 若
為
的極大值點,求
的單調(diào)區(qū)間(用
表示);
(Ⅱ) 若
恰有兩解,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分15分)
已知函數(shù)
.
(Ⅰ)當(dāng)
時,試判斷
的單調(diào)性并給予證明;
(Ⅱ)若
有兩個極值點
.
(i) 求實數(shù)a的取值范圍;
(ii)證明:
。 (注:
是自然對數(shù)的底數(shù))
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com