【題目】已知函數(shù)
.
(1)求函數(shù)
的極值;
(2)若
,是否存在整數(shù)
使
對(duì)任意
成立?若存在,求出
的最小值;若不存在,請(qǐng)說明理由.
【答案】(1)極大值
不存在極小值;(2)2
【解析】
(1)通過求導(dǎo),令導(dǎo)函數(shù)等于零,求得
為
的極大值點(diǎn),求解
得到函數(shù)極大值,根據(jù)單調(diào)性可知
無極小值;(2)將問題轉(zhuǎn)化為:對(duì)任意
,
恒成立問題,分別在
和
兩種情況下討論;當(dāng)
時(shí),由
可知不合題意;當(dāng)
時(shí),可求得最大值為
,只需最大值
即可,由此得到
,經(jīng)驗(yàn)證可得
為滿足題意的最小整數(shù).
(1)
![]()
令
,則![]()
分析知,當(dāng)
時(shí),
;當(dāng)
時(shí),![]()
函數(shù)
在區(qū)間
上單調(diào)遞增,在區(qū)間
上單調(diào)遞減
函數(shù)
在
處取得極大值
,不存在極小值
(2)據(jù)題意,得
對(duì)任意
成立
對(duì)任意
成立
設(shè)函數(shù)![]()
可知
對(duì)任意
成立
①當(dāng)
時(shí),
對(duì)任意
成立,此時(shí)
在區(qū)間
上單調(diào)遞增
又![]()
不滿足題設(shè);
②當(dāng)
時(shí),![]()
令
,則
(舍),![]()
分析知,函數(shù)
在區(qū)間
上單調(diào)遞增,在區(qū)間
上單調(diào)遞減
![]()
又函數(shù)
在
上單調(diào)遞減
![]()
![]()
所求整數(shù)
的最小值為![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中直線
與拋物線C:
交于A,B兩點(diǎn),且
.
求C的方程;
若D為直線
外一點(diǎn),且
的外心M在C上,求M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體
的棱上(除去棱AD)到直線
與
的距離相等的點(diǎn)有
個(gè),記這
個(gè)點(diǎn)分別為
,則直線
與平面
所成角的正弦值為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的圓心C在直線
上.
若圓C與y軸的負(fù)半軸相切,且該圓截x軸所得的弦長(zhǎng)為
,求圓C的標(biāo)準(zhǔn)方程;
已知點(diǎn)
,圓C的半徑為3,且圓心C在第一象限,若圓C上存在點(diǎn)M,使
為坐標(biāo)原點(diǎn)
,求圓心C的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在
中,角
,
,
所對(duì)的邊分別為
,
,
,且
.
(Ⅰ)求角
的大小;
(Ⅱ)已知
,
的面積為
,求
的周長(zhǎng).
【答案】(Ⅰ)
.(Ⅱ)
.
【解析】【試題分析】(I)利用正弦定理和三角形內(nèi)角和定理化簡(jiǎn)已知,可求得
的值,進(jìn)而求得
的大小.(II)利用余弦定理和三角形的面積公式列方程組求解的
的值,進(jìn)而求得三角形周長(zhǎng).
【試題解析】
(Ⅰ)由
及正弦定理得,
,
,∴
,
又∵
,∴
.
又∵
,∴
.
(Ⅱ)由
,
,根據(jù)余弦定理得
,
由
的面積為
,得
.
所以
,得
,
所以
周長(zhǎng)
.
【題型】解答題
【結(jié)束】
18
【題目】為促進(jìn)農(nóng)業(yè)發(fā)展,加快農(nóng)村建設(shè),某地政府扶持興建了一批“超級(jí)蔬菜大棚”.為了解大棚的面積與年利潤(rùn)之間的關(guān)系,隨機(jī)抽取了其中的7個(gè)大棚,并對(duì)當(dāng)年的利潤(rùn)進(jìn)行統(tǒng)計(jì)整理后得到了如下數(shù)據(jù)對(duì)比表:
大棚面積(畝) | 4.5 | 5.0 | 5.5 | 6.0 | 6.5 | 7.0 | 7.5 |
年利潤(rùn)(萬元) | 6 | 7 | 7.4 | 8.1 | 8.9 | 9.6 | 11.1 |
由所給數(shù)據(jù)的散點(diǎn)圖可以看出,各樣本點(diǎn)都分布在一條直線附近,并且
與
有很強(qiáng)的線性相關(guān)關(guān)系.
(Ⅰ)求
關(guān)于
的線性回歸方程;
(Ⅱ)小明家的“超級(jí)蔬菜大棚”面積為8.0畝,估計(jì)小明家的大棚當(dāng)年的利潤(rùn)為多少;
(Ⅲ)另外調(diào)查了近5年的不同蔬菜畝平均利潤(rùn)(單位:萬元),其中無絲豆為:1.5,1.7,2.1,2.2,2.5;彩椒為:1.8,1.9,1.9,2.2,2.2,請(qǐng)分析種植哪種蔬菜比較好?
參考數(shù)據(jù):
,
.
參考公式:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)正
和一個(gè)平行四邊形ABDE在同一個(gè)平面內(nèi),其中
,
,AB,DE的中點(diǎn)分別為F,G.現(xiàn)沿直線AB將
翻折成
,使二面角
為
,設(shè)CE中點(diǎn)為H.
![]()
(1)(i)求證:平面
平面AGH;
(ii)求異面直線AB與CE所成角的正切值;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某客戶考察了一款熱銷的凈水器,使用壽命為十年,改款凈水器為三級(jí)過濾,每一級(jí)過濾都由核心部件濾芯來實(shí)現(xiàn).在使用過程中,一級(jí)濾芯需要不定期更換,其中每更換
個(gè)一級(jí)濾芯就需要更換
個(gè)二級(jí)濾芯,三級(jí)濾芯無需更換.其中一級(jí)濾芯每個(gè)
元,二級(jí)濾芯每個(gè)
元.記一臺(tái)凈水器在使用期內(nèi)需要更換的二級(jí)濾芯的個(gè)數(shù)構(gòu)成的集合為
.如圖是根據(jù)
臺(tái)該款凈水器在十年使用期內(nèi)更換的一級(jí)濾芯的個(gè)數(shù)制成的柱狀圖.
![]()
(1)結(jié)合圖,寫出集合
;
(2)根據(jù)以上信息,求出一臺(tái)凈水器在使用期內(nèi)更換二級(jí)濾芯的費(fèi)用大于
元的概率(以
臺(tái)凈水器更換二級(jí)濾芯的頻率代替
臺(tái)凈水器更換二級(jí)濾芯發(fā)生的概率);
(3)若在購(gòu)買凈水器的同時(shí)購(gòu)買濾芯,則濾芯可享受
折優(yōu)惠(使用過程中如需再購(gòu)買無優(yōu)惠).假設(shè)上述
臺(tái)凈水器在購(gòu)機(jī)的同時(shí),每臺(tái)均購(gòu)買
個(gè)一級(jí)濾芯、
個(gè)二級(jí)濾芯作為備用濾芯(其中
,
),計(jì)算這
臺(tái)凈水器在使用期內(nèi)購(gòu)買濾芯所需總費(fèi)用的平均數(shù).并以此作為決策依據(jù),如果客戶購(gòu)買凈水器的同時(shí)購(gòu)買備用濾芯的總數(shù)也為
個(gè),則其中一級(jí)濾芯和二級(jí)濾芯的個(gè)數(shù)應(yīng)分別是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
及直線
:
.
(1)證明:不論
取什么實(shí)數(shù),直線
與圓C總相交;
(2)求直線
被圓C截得的弦長(zhǎng)的最小值及此時(shí)的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(I)求曲線
在點(diǎn)
處的切線方程;
(Ⅱ)當(dāng)
時(shí),求證:函數(shù)
存在極小值;
(Ⅲ)請(qǐng)直接寫出函數(shù)
的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com