【題目】三棱柱
,側(cè)棱與底面垂直,
,
,
,
分別是
,
的中點(diǎn).
![]()
(
)求證:
平面
.
(
)求證:平面
平面
.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析.
【解析】試題分析:(1)欲證MN||平面BCC1B1,根據(jù)直線與平面平行的判定定理可知只需證MN與平面BCC1B1內(nèi)一直線平行即可,而連接BC1,AC1.根據(jù)中位線定理可知MN||BC1,又MN平面BCC1B1滿足定理所需條件;(2)證明MN⊥BC1,MN⊥AC1,即可證明MN⊥平面ABC1,從而證明平面MAC1⊥平面ABC1.
(
)連接
,
.
在
中,∵
,
是
,
的中點(diǎn),
∴
,
又∵
平面
,
∴
平面
.
(
)∵三棱柱
中,側(cè)棱與底面垂直,
∴四邊形
是正方形,
∴
,
∴
,
連接
,
,則
≌
,
∴
,
∵
是
的中點(diǎn),
∴
,
∵
,
∴
平面
,
∵
平面
,
∴平面
平面
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=
,函數(shù)g(x)=b﹣f(2﹣x),其中b∈R,若函數(shù)y=f(x)﹣g(x)恰有4個(gè)零點(diǎn),則b的取值范圍是( )
A.(
,+∞)
B.(﹣∞,
)
C.(0,
)
D.(
,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+ax﹣lnx,a∈R.
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)令g(x)=f(x)﹣x2 , 是否存在實(shí)數(shù)a,當(dāng)x∈(0,e](e是自然常數(shù))時(shí),函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)=
,則函數(shù)y=|f(x)|﹣
的零點(diǎn)個(gè)數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在棱長(zhǎng)為1的正方體
中,點(diǎn)
分別是棱
的中點(diǎn),
是側(cè)面
內(nèi)一點(diǎn),若
∥平面
,則線段
長(zhǎng)度的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在斜三梭柱ABC﹣A1B1C1中,側(cè)面AA1C1C是菱形,AC1與A1C交于點(diǎn)O,E是棱AB上一點(diǎn),且OE∥平面BCC1B1![]()
(1)求證:E是AB中點(diǎn);
(2)若AC1⊥A1B,求證:AC1⊥BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱椎
中,底面
為菱形,
為
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)若
底面
,
,
,
,求三棱椎
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,
,
,
,平面
底面
,
.
和
分別是
和
的中點(diǎn),求證:
![]()
(Ⅰ)
底面
;
(Ⅱ)
平面
;
(Ⅲ)平面
平面
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓
,直線
過(guò)點(diǎn)
且與圓
相切 .
(I)求直線
的方程;
(II)如圖,圓
與
軸交于
兩點(diǎn),點(diǎn)
是圓
上異于
的任意一點(diǎn),過(guò)點(diǎn)
且與
軸垂直的直線為
,直線
交直線
于點(diǎn)
,直線
交直線
于點(diǎn)
,求證:以
為直徑的圓
與
軸交于定點(diǎn)
,并求出點(diǎn)
的坐標(biāo) .
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com