【題目】如果函數(shù)f(x)=
,g(x)=log2x,關(guān)于x的不等式f(x)g(x)≥0對于任意x∈(0,+∞)恒成立,則實數(shù)a的取值范圍是 .
【答案】![]()
【解析】解:當(dāng)x∈(0,1]時,g(x)=log2x≤0, ∵關(guān)于x的不等式f(x)g(x)≥0對于任意x∈(0,1]恒成立,
∴f(x)=2ax﹣1≤0在(0,1]恒成立,即有2a≤
恒成立,則2a≤1,即a≤
;
當(dāng)x>1時,g(x)=log2x>0,
∵關(guān)于x的不等式f(x)g(x)≥0對于任意x∈(1,+∞)恒成立,
∴f(x)=3ax﹣1≥0在(1,+∞)恒成立,即有3a≥
恒成立,則3a≥1,即a≥
.
∵關(guān)于x的不等式f(x)g(x)≥0對于任意x∈(0,+∞)恒成立,
∴a的取值范圍是:[
,
].
所以答案是:
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足c=2,C=
.
(Ⅰ)若a=
,求角A的大小;
(Ⅱ)若△ABC的面積等于
,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四棱錐P﹣ABCD中,底面ABCD為菱形,且直線PA⊥平面ABCD,又棱PA=AB=2,E為CD的中點,∠ABC=60°.
(Ⅰ) 求證:直線EA⊥平面PAB;
(Ⅱ) 求直線AE與平面PCD所成角的正切值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
,g(x)=x3﹣x2﹣3.
(1)當(dāng)a=2時,求曲線y=f(x)在x=1處的切線方程;
(2)如果存在x1 , x2∈[0,2],使得g(x1)﹣g(x2)≥M成立,求滿足上述條件的最大整數(shù)M;
(3)如果對任意的
,都有f(s)≥g(t)成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
為偶函數(shù).
(1)求實數(shù)a的值;
(2)記集合E={y|y=f(x),x∈{﹣1,1,2}},λ=(lg 2)2+lg 2lg 5+lg 5﹣
,判斷λ與E的關(guān)系;
(3)當(dāng)x∈[
,
](m>0,n>0)時,若函數(shù)f(x)的值域為[2﹣3m,2﹣3n],求m,n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù)
, ![]()
(1)當(dāng)
時,求不等式
的解集;
(2)若不等式
的解集為空集,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)所給條件求直線的方程:
(1)直線過點(﹣4,0),傾斜角的正弦值為
;
(2)直線過點(﹣2,1),且到原點的距離為2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面四邊形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,將△ABD沿BD折起,使得平面ABD⊥平面BCD,如圖. ![]()
(1)求證:AB⊥CD;
(2)若M為AD中點,求直線AD與平面MBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在三棱錐S﹣ABC中,△ABC是邊長為2的正三角形,平面SAC⊥平面ABC,SA=SC=
,M為AB的中點.
(I)證明:AC⊥SB;
(Ⅱ)求點B到平面SCM的距離.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com