已知橢圓的方程為
它的一個焦點與拋物線
的焦點重合,離心率
過橢圓的右焦點F作與坐標軸不垂直的直線
交橢圓于A、B兩點.(Ⅰ)求橢圓的標準方程;
(Ⅱ)設點
求直線
的方程
科目:高中數學 來源: 題型:解答題
已知橢圓![]()
上的動點到焦點距離的最小值為
,以原點為圓心、橢圓的短半軸長為半徑的圓與直線
相切.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若過點
(2,0)的直線與橢圓
相交于
兩點,
為橢圓上一點, 且滿足
(
為坐標原點),當
時,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知一條曲線C在y軸右邊,C上每一點到點F(1,0)的距離減去它到y軸距離的差都是1
(1)求曲線C的方程.
(2)是否存在正數m,對于過點M(m,0)且與曲線C有兩個交點A,B的任一直線,都有
?若存在,求出m的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓
的左、右焦點分別為
,上頂點為
,離心率為
,在
軸負半軸上有一點
,且![]()
(Ⅰ)若過
三點的圓恰好與直線
相切,求橢圓C的方程;
(Ⅱ)在(Ⅰ)的條件下,過右焦點
作斜率為
的直線
與橢圓C交于
兩點,在
軸上是否存在點
,使得以
為鄰邊的平行四邊形是菱形?如果存在,求出
的取值范圍;否則,請說明理由.![]()
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
.(本題滿分14分)已知橢圓的中心為坐標原點O,焦點在X軸上,橢圓短半軸長為1,動點
在直線
上。
(1)求橢圓的標準方程
(2)求以線段OM為直徑且被直線
截得的弦長為2的圓的方程;
(3)設F是橢圓的右焦點,過點F作直線OM的垂線與以線段OM為直徑的圓交于點N,求證:線段ON的長為定值,并求出這個定值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分14分)已知橢圓C:
=1(a>b>0)的離心率為
,短軸一
個端點到右焦點的距離為3.
(1)求橢圓C的方程;
(2)過橢圓C上的動點P引圓O:
的兩條切線PA、PB,A、B分別為切點,試探究橢圓C上是否存在點P,由點P向圓O所引的兩條切線互相垂直?若存在,請求出點P的坐標;若不存在,請說明理由.![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com