已知拋物線和橢圓都經(jīng)過點(diǎn)
,它們?cè)?img src="http://thumb.zyjl.cn/pic5/tikupic/f2/0/11ckm4.png" style="vertical-align:middle;" />軸上有共同焦點(diǎn),橢圓的對(duì)稱軸是坐標(biāo)軸,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn).
(1)求這兩條曲線的方程;
(2)對(duì)于拋物線上任意一點(diǎn)
,點(diǎn)
都滿足
,求
的取值范圍.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
(t為參數(shù)),它與曲線
交于A、B兩點(diǎn)。
(1)求
的長;
(2)在以
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)P的極坐標(biāo)為
,求點(diǎn)P到線段AB中點(diǎn)M的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線l:y=kx+2(k為常數(shù))過橢圓
+
=1(a>b>0)的上頂點(diǎn)B和左焦點(diǎn)F,直線l被圓x2+y2=4截得的弦長為d.
(1)若d=2
,求k的值;
(2)若d≥
,求橢圓離心率e的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知兩定點(diǎn)
,
,動(dòng)點(diǎn)
滿足
,由點(diǎn)
向
軸作垂線段
,垂足為
,點(diǎn)
滿足
,點(diǎn)
的軌跡為
.
(1)求曲線
的方程;
(2)過點(diǎn)
作直線
與曲線
交于
,
兩點(diǎn),點(diǎn)
滿足
(
為原點(diǎn)),求四邊形
面積的最大值,并求此時(shí)的直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知平面內(nèi)一動(dòng)點(diǎn)
到點(diǎn)
的距離與點(diǎn)
到
軸的距離的差等于1.(I)求動(dòng)點(diǎn)
的軌跡
的方程;(II)過點(diǎn)
作兩條斜率存在且互相垂直的直線
,設(shè)
與軌跡
相交于點(diǎn)
,
與軌跡
相交于點(diǎn)
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)設(shè)橢圓
:
與雙曲線
:
有相同的焦點(diǎn)
,
是橢圓
與雙曲線
的公共點(diǎn),且
的周長為
,求橢圓
的方程;
我們把具有公共焦點(diǎn)、公共對(duì)稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”.
(2)如圖,已知“盾圓
”的方程為
.設(shè)“盾圓
”上的任意一點(diǎn)
到
的距離為
,
到直線
的距離為
,求證:
為定值;
(3)由拋物線弧
:
(
)與第(1)小題橢圓弧
:
(
)所合成的封閉曲線為“盾圓
”.設(shè)過點(diǎn)
的直線與“盾圓
”交于
兩點(diǎn),
,
且
(
),試用
表示
;并求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
:
的一個(gè)焦點(diǎn)為
且過點(diǎn)
.![]()
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)橢圓E的上下頂點(diǎn)分別為A1,A2,P是橢圓上異于A1,A2的任一點(diǎn),直線PA1,PA2分別交
軸于點(diǎn)N,M,若直線OT與過點(diǎn)M,N的圓G相切,切點(diǎn)為T.
證明:線段OT的長為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
:
,左、右兩個(gè)焦點(diǎn)分別為
、
,上頂點(diǎn)
,
為正三角形且周長為6.
(1)求橢圓
的標(biāo)準(zhǔn)方程及離心率;
(2)
為坐標(biāo)原點(diǎn),
是直線
上的一個(gè)動(dòng)點(diǎn),求
的最小值,并求出此時(shí)點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上的橢圓
,它的離心率為
,一個(gè)焦點(diǎn)和拋物線
的焦點(diǎn)重合,過直線
上一點(diǎn)
引橢圓
的兩條切線,切點(diǎn)分別是
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若在橢圓
上的點(diǎn)
處的橢圓的切線方程是
. 求證:直線
恒過定點(diǎn)
;并出求定點(diǎn)
的坐標(biāo).
(Ⅲ)是否存在實(shí)數(shù)
,使得
恒成立?(點(diǎn)
為直線
恒過的定點(diǎn))若存在,求出
的值;若不存在,請(qǐng)說明理由。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com