【題目】已知拋物線
的焦點(diǎn)F與橢圓
的右焦點(diǎn)重合,過焦點(diǎn)F的直線l交拋物線于A,B兩點(diǎn).
(1)求拋物線C的方程;
(2)記拋物線C的準(zhǔn)線與x軸的交點(diǎn)為H,試問:是否存在
,使得
,且
成立?若存在,求實(shí)數(shù)
的取值范圍;若不存在,請說明理由.
【答案】(1)
;(2)存在;![]()
【解析】
(1)根據(jù)拋物線的焦點(diǎn)
,結(jié)合橢圓的焦點(diǎn),可得結(jié)果.
(2)巧設(shè)直線的方程
,聯(lián)立直線與拋物線方程,利用韋達(dá)定理,可得
,然后根據(jù)
,可得到
的式子,最后可得結(jié)果.
(1)依題意:在橢圓
中,
,
,則
,
所以點(diǎn)
,則
,即
.
故拋物線C的方程為
.
(2)設(shè)直線
,
,
,
聯(lián)立
,消去x,得
.
因?yàn)?/span>
,所以
,
且
.
又
,則
,
即
,代入①,得
,
消去
,得
.易得
,
則![]()
![]()
![]()
由![]()
![]()
![]()
![]()
![]()
![]()
.
由
,
解得
或
(舍去),
將
代入
,
得
,
又由題意,可得
,
解得
或
.
故存在滿足題意的實(shí)數(shù)
,
其取值范圍是
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,有三根針和套在一根針上的
個金屬片,按下列規(guī)則,把金屬片從一根針上全部移到另一根針上.
(1)每次只能移動一個金屬片;
(2)在每次移動過程中,每根針上較大的金屬片不能放在較小的金屬片上面.
將
個金屬片從1號針移到3號針最少需要移動的次數(shù)記為
,則
__________.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓
,
是長軸的一個端點(diǎn),弦
過橢圓的中心
,且
.
![]()
(1)求橢圓
的方程.
(2)過橢圓
右焦點(diǎn)
的直線,交橢圓
于
兩點(diǎn),交直線
于點(diǎn)
,判定直線
的斜率是否依次構(gòu)成等差數(shù)列?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
,
)為奇函數(shù),且相鄰兩對稱軸間的距離為
.
(1)當(dāng)
時,求
的單調(diào)遞減區(qū)間;
(2)將函數(shù)
的圖象沿
軸方向向右平移
個單位長度,再把橫坐標(biāo)縮短到原來的
(縱坐標(biāo)不變),得到函數(shù)
的圖象.當(dāng)時
,求函數(shù)
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面與圓O所在的平面互相垂直.已知AB=2,EF=1.
![]()
(Ⅰ)求證:平面DAF⊥平面CBF;
(Ⅱ)當(dāng)AD=1時,求直線FB與平面DFC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)的某種產(chǎn)品,如果年返修率不超過千分之一,則其生產(chǎn)部門當(dāng)年考核優(yōu)秀,現(xiàn)獲得該公司2014-2018年的相關(guān)數(shù)據(jù)如下表所示:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年生產(chǎn)臺數(shù) | 2 | 4 | 5 | 6 | 8 |
該產(chǎn)品的年利潤 | 30 | 40 | 60 | 50 | 70 |
年返修臺數(shù)(臺) | 19 | 58 | 45 | 71 | 70 |
注:![]()
(1)從該公司2014-2018年的相關(guān)數(shù)據(jù)中任意選取3年的數(shù)據(jù),求這3年中至少有2年生產(chǎn)部門考核優(yōu)秀的概率.
(2)利用上表中五年的數(shù)據(jù)求出年利潤
(百萬元)關(guān)于年生產(chǎn)臺數(shù)
(萬臺)的回歸直線方程是
①.現(xiàn)該公司計劃從2019年開始轉(zhuǎn)型,并決定2019年只生產(chǎn)該產(chǎn)品1萬臺,且預(yù)計2019年可獲利32(百萬元);但生產(chǎn)部門發(fā)現(xiàn),若用預(yù)計的2019年的數(shù)據(jù)與2014-2018年中考核優(yōu)秀年份的數(shù)據(jù)重新建立回歸方程,只有當(dāng)重新估算的
,
的值(精確到0.01),相對于①中
,
的值的誤差的絕對值都不超過
時,2019年該產(chǎn)品返修率才可低于千分之一.若生產(chǎn)部門希望2019年考核優(yōu)秀,能否同意2019年只生產(chǎn)該產(chǎn)品1萬臺?請說明理由.
(參考公式:
,
,
,
相對
的誤差為
.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某蔬菜批發(fā)商分別在甲、乙兩市場銷售某種蔬菜(兩個市場的銷售互不影響),己知該蔬菜每售出1噸獲利500元,未售出的蔬菜低價處理,每噸虧損100 元.現(xiàn)統(tǒng)計甲、乙兩市場以往100個銷售周期該蔬菜的市場需求量的頻數(shù)分布,如下表:
以市場需求量的頻率代替需求量的概率.設(shè)批發(fā)商在下個銷售周期購進(jìn)
噸該蔬菜,在 甲、乙兩市場同時銷售,以
(單位:噸)表示下個銷售周期兩市場的需求量,
(單位:元)表示下個銷售周期兩市場的銷售總利潤.
(Ⅰ)當(dāng)
時,求
與
的函數(shù)解析式,并估計銷售利潤不少于8900元的槪率;
(Ⅱ)以銷售利潤的期望為決策依據(jù),判斷
與
應(yīng)選用哪—個.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面真角坐標(biāo)系xOy中,曲線
的參數(shù)方程為
(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立根坐標(biāo)系.曲線
的極坐標(biāo)方程為
.
(1)求曲線
的普通方程和曲線
的直角坐標(biāo)方程;
(2)若曲線
與曲線
交于M,N兩點(diǎn),直線OM和ON的斜率分別為
和
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
是橢圓
上的點(diǎn),
是焦點(diǎn),離心率
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)
是橢圓上的兩點(diǎn),且
,問線段
的垂直平分線是否過定點(diǎn)?若過定點(diǎn),求出此定點(diǎn)的坐標(biāo),若不過定點(diǎn),說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com