直棱柱ABCD—A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2.
(1)求證:平面ACB1⊥平面BB1C1C;
(2)在A1B1上是否存在一點P,使得DP與平面ACB1平行?證明你的結論.![]()
(1)由BB1⊥平面ABCD,得到BB1⊥AC.
又∠BAD=∠ADC=90°,AB=2AD=2CD=2,
得到∠CAB=45°,BC=
, BC⊥AC.
平面ACB1⊥平面BB1C1C.
(2)存在點P,P為A1B1的中點.
解析試題分析:(1)證明:直棱柱ABCD—A1B1C1D1中,BB1⊥平面ABCD,
∴BB1⊥AC.
又∵∠BAD=∠ADC=90°,AB=2AD=2CD=2,
∴AC=
,∠CAB=45°,∴BC=
,∴BC⊥AC.
又BB1∩BC=B,BB1?平面BB1C1C,BC?平面BB1C1C,
∴AC⊥平面BB1C1C.
又∵AC?平面ACB1,∴平面ACB1⊥平面BB1C1C.(6分)
(2)存在點P,P為A1B1的中點.
要使DP與平面ACB1平行,只要DP∥B1C即可因為A1B1∥DC,所以四邊形DCB1P為平行四邊形,所以B1P=DC=
A1B1=1,所以P為A1B1的中點.即當P為A1B1的中點時,DP與平面BCB1和平面ACB1都平行.(12分)
考點:本題主要考查立體幾何中的平行關系、垂直關系。
點評:典型題,立體幾何題,是高考必考內容,往往涉及垂直關系、平行關系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,若利用向量則可簡化證明過程。(2)是一道探索性問題,注意探尋“特殊點”。
科目:高中數學 來源: 題型:解答題
如圖,四棱錐P—ABCD中,底面ABCD是邊長為
的正方形E, F分別為PC,BD的中點,側面PAD⊥底面ABCD,且PA=PD=
AD.![]()
(Ⅰ)求證:EF//平面PAD;
(Ⅱ)求三棱錐C—PBD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖:四棱錐
中,
,
,
.
∥
,
.![]()
.![]()
(Ⅰ)證明:
平面
;
(Ⅱ)在線段
上是否存在一點
,使直線
與平面
成角正弦值等于
,若存在,指出
點位置,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
本題共有2個小題,第(1)小題滿分6分,第(2)小題滿分6分.
如圖,已知正四棱柱
的底面邊長是
,體積是
,
分別是棱
、
的中點.![]()
(1)求直線
與平面
所成的角(結果用反三角函數表示);
(2)求過
的平面與該正四棱柱所截得的多面體
的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)如圖,直角梯形
與等腰直角三角形
所在的平面互相垂直.
∥
,
,
,
.![]()
(1)求直線
與平面
所成角的正弦值;
(2)線段
上是否存在點
,使
// 平面
?若存在,求出
;若不存在,說明理由.1
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com