(本小題共12分)
如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=2,BC=
AD=1,CD=
.![]()
(1)求證:平面PQB⊥平面PAD;
(2)若二面角M-BQ-C為30°,設(shè)PM=tMC,試確定t的值.
(1)∵AD // BC,BC=
AD,Q為AD的中點(diǎn),∴四邊形BCDQ為平行四邊形,∴CD // BQ.∵∠ADC=90°∴∠AQB=90°即QB⊥AD.又∵平面PAD⊥平面ABCD 且平面PAD∩平面ABCD=AD,∴BQ⊥平面PAD.∵BQ
平面PQB,∴平面PQB⊥平面PAD.
(2)
.
解析試題分析:(1)∵AD // BC,BC=
AD,Q為AD的中點(diǎn),∴四邊形BCDQ為平行四邊形,∴CD // BQ.∵∠ADC=90°∴∠AQB=90°即QB⊥AD.
又∵平面PAD⊥平面ABCD 且平面PAD∩平面ABCD=AD,
∴BQ⊥平面PAD.
∵BQ
平面PQB,∴平面PQB⊥平面PAD.
(2)∵PA=PD,Q為AD的中點(diǎn), ∴PQ⊥AD.
∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴PQ⊥平面ABCD.
如圖,以Q為原點(diǎn)建立空間直角坐標(biāo)系.
則平面BQC的法向量為
;
,
,
,
.
設(shè)
,則
,
,
∵
,
∴
, ∴
在平面MBQ中,
,
,
∴ 平面MBQ法向量為
.
∵二面角M-BQ-C為30,![]()
∴
.
考點(diǎn):本題考查了空間中的線面關(guān)系
點(diǎn)評:高考中常考查空間中平行關(guān)系與垂直關(guān)系的證明以及幾何體體積的計(jì)算,這是高考的重點(diǎn)內(nèi)容.證明的關(guān)鍵是熟練掌握并靈活運(yùn)用相關(guān)的判定定理與性質(zhì)定理.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖。在直三棱柱ABC—A1B1C1中,AB=BC=2AA1,∠ABC=90°,M是BC中點(diǎn)。![]()
(I)求證:A1B∥平面AMC1;
(II)求直線CC1與平面AMC1所成角的正弦值;
(Ⅲ)試問:在棱A1B1上是否存在點(diǎn)N,使AN與MC1成角60°?若存在,確定點(diǎn)N的位置;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點(diǎn).![]()
(1)求證:EF∥平面CB1D1;
(2)求證:平面CAA1C1⊥平面CB1D1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖,五面體
中,
,底面ABC是正三角形,
=2.四邊形
是矩形,二面角
為直二面角,D為
中點(diǎn)。
(I)證明:
平面
;
(II)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在直三棱柱ABC-A1B1C1中, AC⊥BC.![]()
(1) 求證:平面AB1C1⊥平面AC1;
(2) 若AB1⊥A1C,求線段AC與AA1長度之比;
(3) 若D是棱CC1的中點(diǎn),問在棱AB上是否存在一點(diǎn)E,使DE∥平面AB1C1?若存在,試確定點(diǎn)E的位置;若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com