【題目】已知a∈R,函數(shù)f(x)=x2﹣2ax+5.
(1)若a>1,且函數(shù)f(x)的定義域和值域均為[1,a],求實(shí)數(shù)a的值;
(2)若不等式x|f(x)﹣x2|≤1對(duì)x∈[
,
]恒成立,求實(shí)數(shù)a的取值范圍.
【答案】
(1)解:∵f(x)的圖象開口向上,對(duì)稱軸為x=a>1,
∴f(x)在[1,a]上單調(diào)遞減,
∴f(1)=a,即6﹣2a=a,解得a=2
(2)解:不等式x|f(x)﹣x2|≤1對(duì)x∈[
,
]恒成立,
即x|2ax﹣5|≤1對(duì)x∈[
,
]恒成立,
故a≥
且a≤
在x∈[
,
]恒成立,
令g(x)=
,x∈[
,
],則g′(x)=﹣
,
令g′(x)>0,解得:
≤x<
,令g′(x)<0,解得:
<x≤
,
故g(x)在[
,
)遞增,在(
,
]遞減,
故g(x)max=g(
)=
,
令h(x)=
,x∈[
,
],h′(x)=
<0,
故h(x)在x∈[
,
]遞減,
h(x)min=h(
)=7,
綜上:
≤a≤7.
【解析】(1)判斷出f(x)的單調(diào)性,利用單調(diào)性列方程解出;(2)問題轉(zhuǎn)化為a≥
且a≤
在x∈[
,
]恒成立,根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
(x+
),g(x)=
(x﹣
).
(1)求函數(shù)h(x)=f(x)+2g(x)的零點(diǎn);
(2)求函數(shù)F(x)=[f(x)]2n﹣[g(x)]2n(n∈N*)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若關(guān)于
的不等式
恒成立,求整數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,我市某居民小區(qū)擬在邊長為1百米的正方形地塊ABCD上劃出一個(gè)三角形地塊APQ種植草坪,兩個(gè)三角形地塊PAB與QAD種植花卉,一個(gè)三角形地塊CPQ設(shè)計(jì)成水景噴泉,四周鋪設(shè)小路供居民平時(shí)休閑散步,點(diǎn)P在邊BC上,點(diǎn)Q在邊CD上,記∠PAB=a. ![]()
(1)當(dāng)∠PAQ=
時(shí),求花卉種植面積S關(guān)于a的函數(shù)表達(dá)式,并求S的最小值;
(2)考慮到小區(qū)道路的整體規(guī)劃,要求PB+DQ=PQ,請(qǐng)?zhí)骄俊螾AQ是否為定值,若是,求出此定值,若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,P,Q分別是BC和CD的中點(diǎn). ![]()
(1)若AB=2,AD=1,∠BAD=60°,求
及cos∠BAC的余弦值;
(2)若
=λ
+
,求λ+μ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
(Ⅰ)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)當(dāng)
,
時(shí),證明:
(其中
為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲正弦函數(shù)shx=
和雙曲余弦函數(shù)chx=
與我們學(xué)過的正弦函數(shù)和余弦函數(shù)有許多類似的性質(zhì),請(qǐng)類比正弦函數(shù)和余弦函數(shù)的和角公式,寫出雙曲正弦或雙曲余弦函數(shù)的一個(gè)類似的正確結(jié)論 .
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com