【題目】下列說法錯誤的是
A. 相關關系是一種非確定性關系
B. 線性回歸方程對應的直線
,至少經過其樣本數據點
中的一個點
C. 在殘差圖中,殘差點分布的帶狀區域的寬度越狹窄,其模型擬合的精度越高
D. 在回歸分析中,
為
的模型比
為
的模型擬合的效果好
科目:高中數學 來源: 題型:
【題目】某社區為了解轄區住戶中離退休老人每天的平均戶外“活動時間”,從轄區住戶的離退休老人中隨機抽取了100位老人進行調查,獲得了每人每天的平均戶外“活動時間”(單位:小時),活動時間按照[0,0.5),[0.5,1),…,[4,4.5]從少到多分成9組,制成樣本的頻率分布直方圖如圖所示.
![]()
(Ⅰ)求圖中a的值;
(Ⅱ)估計該社區住戶中離退休老人每天的平均戶外“活動時間”的中位數;
(III)在[1.5,2)、[2,2.5)這兩組中采用分層抽樣抽取9人,再從這9人中隨機抽取2人,求抽取的兩人恰好都在同一個組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系
中,圓
的參數方程為
(
為參數),圓
與圓
外切于原點
,且兩圓圓心的距離
,以坐標原點為極點,
軸正半軸為極軸建立極坐標系.
(1)求圓
和圓
的極坐標方程;
(2)過點
的直線
、
與圓
異于點
的交點分別為點
和點
,與圓
異于點
的交點分別為點
和點
,且
.求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種儀器隨著使用年限的增加,每年的維護費相應增加. 現對一批該儀器進行調查,得到這批儀器自購入使用之日起,前5年平均每臺儀器每年的維護費用大致如下表:
年份 | 1 | 2 | 3 | 4 | 5 |
維護費 | 0.7 | 1.2 | 1.6 | 2.1 | 2.4 |
(1)根據表中所給數據,試建立
關于
的線性回歸方程
;
(2)若該儀器的價格是每臺12萬元,你認為應該使用滿五年換一次儀器,還是應該使用滿八年換一次儀器?并說明理由.
參考公式:用最小二乘法求線性回歸方程
的系數公式:
,![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
.
(1)若
,求曲線
在點
處的切線;
(2)若函數
在其定義域內為增函數,求正實數
的取值范圍;
(3)設函數
,若在
上至少存在一點
,使得
成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據統計,2017年國慶中秋假日期間,黔東南州共接待游客590.23萬人次,實現旅游收入48.67億元,同比分別增長44.57%、55.22%.旅游公司規定:若公司導游接待旅客,旅游年總收入不低于40(單位:百萬元),則稱為優秀導游.經驗表明,如果公司的優秀導游率越高,則該公司的影響度越高.已知甲、乙兩家旅游公司各有導游100名,統計他們一年內旅游總收入,分別得到甲公司的頻率分布直方圖和乙公司的頻數分布表如下:
![]()
分組 |
|
|
|
|
|
頻數 |
| 18 | 49 | 24 | 5 |
(Ⅰ)求
的值,并比較甲、乙兩家旅游公司,哪家的影響度高?
(Ⅱ)若導游的獎金
(單位:萬元),與其一年內旅游總收入
(單位:百萬元)之間的關系為
,求甲公司導游的年平均獎金;
(Ⅲ)從甲、乙兩家公司旅游收入在
的總人數中,用分層抽樣的方法隨機抽取6人進行表彰,其中有兩名導游代表旅游行業去參加座談,求參加座談的導游中有乙公司導游的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠生產不同規格的一種產品,根據檢測標準,其合格產品的質量
與尺寸x(mm)之間近似滿足關系式
(b、c為大于0的常數).按照某項指標測定,當產品質量與尺寸的比在區間
內時為優等品.現隨機抽取6件合格產品,測得數據如下:
尺寸x(mm) | 38 | 48 | 58 | 68 | 78 | 88 |
質量y (g) | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
質量與尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(Ⅰ)現從抽取的6件合格產品中再任選3件,記
為取到優等品的件數,試求隨機變量
的分布列和期望;
(Ⅱ)根據測得數據作了初步處理,得相關統計量的值如下表:
|
|
|
|
75.3 | 24.6 | 18.3 | 101.4 |
(ⅰ)根據所給統計量,求y關于x的回歸方程;
(ⅱ)已知優等品的收益
(單位:千元)與
的關系為
,則當優等品的尺寸x為何值時,收益
的預報值最大?(精確到0.1)
附:對于樣本
,其回歸直線
的斜率和截距的最小二乘估計公式分別為:
,
,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com